基于无迹卡尔曼滤波的室内超宽带跟踪算法
UWB indoor tracking algorithm based on UKF
-
摘要: 为解决移动目标在室内跟踪定位误差较大的问题,提出了一种基于无迹卡尔曼滤波(UKF)的超宽带(UWB)跟踪定位算法.该算法在定位阶段联合到达时间(TOA)与接收信号强度(RSS)两种定位算法的优势以获得较高的定位精度;在跟踪阶段,将TOA-RSS联合定位算法获得的量测值进行UKF估计,以得到移动目标的跟踪轨迹.仿真结果表明,该算法室内滤波误差与均方根误差均比同样使用TOA-RSS定位方法而采用扩展卡尔曼滤波(EKF)估计算法有一定程度的降低,跟踪定位精度有较大提高.Abstract: In order to solve the problem of the errors of moving target tracking in indoor positioning, the ultra wide band tracking localization algorithm was proposed based on unscented Kalman filter (UKF). In indoor positioning, a combination of TOA and RSS path loss model was used to estimate a targets position to get a higher positioning accuracy; In the tracking phase, the measured values obtained by the TOA-RSS joint localization algorithm were estimated by UKF to obtain the tracking trajectory of the moving target. The simulation results showed that the filtering error and root mean square error had a certain degree of reduction and the tracking and positioning accuracy was greatly improved when TOA-RSS joint localization algorithm was estimated by EKF.
-
-
[1]
TSUJI J,KAWAMURA H,SUZUKI K,et al.ZigBee based indoor localization with particle filter estimation[C]//2010 IEEE International Conference on Systems Man and Cybernetics,Piscataway:IEEE,2010:1115.
-
[2]
HEDLEY M,ZHAI Q.Wireless sensor network using hybrid TDOA/RSS tracking of uncooperative targets[C]//2014 International Symposium on Wireless Personal Multimedia Communications (WPMC),Piscataway:IEEE,2014:385.
-
[3]
KHAN M W,SALMAN N,KEMP A H.Enhanced hybrid positioning in wireless networks I:AoA-ToA[C]//2014 International Conference on Telecommunications and Multimedia (TEMU),Piscataway:IEEE,2014:86.
-
[4]
BAO X,LI J,YUEN C.A new indoor localization strategy via node cooperation and iterative detection[C]//201347th Annual Conference on Information Sciences and Systems (CISS),Piscataway:IEEE,2013:1.
-
[5]
陈晓海,彭舰,刘唐.基于最优信标节点的无线传感器网络质心定位算法[J].计算机应用,2015,35(1):5.
-
[6]
YASSIN A,JAFFAL Y,NASSER Y.On the evaluation of geometric localization using recursive maximum likelihood estimation[C]//Mediterranean Electro technical Conference (MELECON),201417th IEEE,Piscataway:IEEE,2014:357-361.
-
[7]
杜娟娟.无迹卡尔曼滤波在无线传感器网络节点定位中的应用[J].南京邮电大学学报(自然科学版),2013,33(1):84.
-
[8]
常强,侯洪涛,曾祥辉,等.GNSS合作定位研究综述[J].宇航学报,2014,35(1):13.
-
[9]
王沁,何杰,张前雄,等.测距误差分级的室内TOA定位算法[J].仪器仪表学报,2011,32(12):2851.
-
[10]
LAARAIEDH M,AVRILLON S,UGUEN B.Hybrid data fusion techniques for localization in UWB networks[C]//WPNC 20096th Workshop on Positioning,Navigation and Communication,Piscataway:IEEE,2009:51.
-
[11]
ALAVI B,PAHLAVAN K,ALSINDI N,et al.Using UWB measurements for statistical analysis of the ranging error in indoor multi-path environment[J].International journal of wireless and optical communications (IJWOC),2011,3(2):189.
-
[12]
WANG L K,HSIEH S,HUANG K,et al.Target tracking in clusters of sensor networks via handoff scheme with extended Kalman filter[C]//IIH-MSP '09 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing,Piscataway:IEEE,2009:446.
-
[1]
计量
- PDF下载量: 157
- 文章访问数: 9628
- 引证文献数: 0