基于高光谱成像技术的甘蔗茎节识别与定位方法研究
Research on identification and location method of sugarcane node based on hyperspectral imaging technology
-
摘要: 针对甘蔗茎节与茎间颜色相近和由于表皮上白色果粉的干扰导致茎节难以识别的问题,提出了一种基于高光谱成像技术的茎节识别与定位方法.采集236个茎节和茎间样本的高光谱图像(874~1734 nm),采用连续投影算法(SPA)提取5个特征波长(1022 nm,1062 nm,1456 nm,1609 nm和1649 nm),建立偏最小二乘法(PLS)分类模型,利用该模型对20组甘蔗高光谱图像进行识别,生成甘蔗茎节的二值化图像,采用图像处理的方法进行茎节定位.实验结果表明,高光谱成像技术测量结果的标准差为0.7 mm,绝对误差的最大值为2.6 mm,能够有效识别与定位甘蔗茎节,为蔗种的防伤芽自动切割提供技术支持.Abstract: Due to the fact that the color of sugarcane nodes and internodes are similar to each other,and the interference of white fruit powder on the skin,node recognition and location were affected seriously.A method for node identification and localization was proposed based on hyperspectral imaging.236 sugarcane samples (874~1734 nm) were collected by the hyperspectral imaging acquisition system.Using successive projections algorithm (SPA) to extract characteristics band (1022 nm,1062 nm,1456 nm,1609 nm and 1649 nm),the PLS discriminant model were established by these 5 characteristic bands.The 20 groups of sugarcane hyperspectral images were identified by the established model,the binary image of sugarcane was gotten,image processing was used to locate the position of node.The experimental result showed the standard deviation was 0.7 mm,the maximum absolute error was 2.6 mm,and it could identify and locate the sugarcane node effectively,provide technical support for automatic cutting of sugarcane which could prevent injury buds.
-
-
[1]
卢庆南,梁贤,陆宇明,等.论广西蔗糖产业经济及其发展战略[J].安徽农业科学,2008,36(36):16095.
-
[2]
陆尚平,文友先,葛维,等.基于机器视觉的甘蔗茎节特征提取与识别[J].农业机械学报,2010,41(10):190.
-
[3]
陆尚平,马翠龙,贺敏超,等.图像灰度统计梯度特性的甘蔗茎节识别研究[J].广西农业机械化,2012(6):21.
-
[4]
MOSHASHAI K,ALMASI M,MINAEI S,et al.Identification of sugarcane nodes using image processing and machine vision technology[J].International Journal of Agricultural Research,2008,3(5):357.
-
[5]
黄亦其,乔曦,唐书喜,等.基于Matlab的甘蔗茎节特征分布定位与试验[J].农业机械学报,2013,44(10):93.
-
[6]
胡鹏程,孙晔,吴海伦,等.高光谱图像对白萝卜糠心的无损检测[J].食品科学,2015,36(12):171.
-
[7]
RIVERA N V,GóMEZ-SANCHIS J,CHANONA-PéREZ J,et al.Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning[J].Biosystems Engineering,2014,122(3):91.
-
[8]
ZHAO M,ESQUERRE C,DOWNEY G,et al.Process analytical technologies for fat and moisture determination in ground beef-A comparison of guided microwave spectroscopy and near infrared hyperspectral imaging[J].Food Control,2017,73:1082.
-
[9]
CEN H,LU R,ZHU Q,et al.Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification[J].Postharvest Biology and Technology,2016,111:352.
-
[10]
WOLD J P,KERMIT M,SEGTNAN V H.Chemical imaging of heterogeneous huscle foods using near-infrared hyperspectral imaging in transmission mode[J].Applied spectroscopy,2016,70(6):953.
-
[11]
GASPARDO B,ZOTTO S D,TORELLI E,et al.A rapid method for detection of fumonisins B1 and B2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere[J].Food Chemistry,2012,135(3):1608.
-
[12]
WU D,SHI H,WANG S J,et al.Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system[J].Analytica Chimica Acta,2012,726:57.
-
[13]
丛智博,孙兰香,辛勇,等.基于激光诱导击穿光谱的合金钢组分偏最小二乘法定量分析[J].光谱学与光谱分析,2014,34(02):542.
-
[14]
吴翔,张卫正,陆江锋,等.基于高光谱技术的玉米种子可视化鉴别研究[J].光谱学与光谱分析,2016,36(2):511.
-
[15]
陆婉珍.现代近红外光谱分析技术[M].北京:中国石化出版社,2007.
-
[16]
张卫正,董寿银,齐晓祥,等.基于图像处理的甘蔗茎节识别与定位[J].农机化研究,2016(4):217.
-
[1]
计量
- PDF下载量: 69
- 文章访问数: 1311
- 引证文献数: 0