JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

魔芋葡甘聚糖基水凝胶的研究进展

刘瑞雪 李义梦 樊晓敏 李迎博 张浩然

刘瑞雪, 李义梦, 樊晓敏, 等. 魔芋葡甘聚糖基水凝胶的研究进展[J]. 轻工学报, 2018, 33(3): 16-29. doi: 10.3969/j.issn.2096-1553.2018.03.003
引用本文: 刘瑞雪, 李义梦, 樊晓敏, 等. 魔芋葡甘聚糖基水凝胶的研究进展[J]. 轻工学报, 2018, 33(3): 16-29. doi: 10.3969/j.issn.2096-1553.2018.03.003
LIU Ruixue, LI Yimeng, FAN Xiaomin, et al. Research progress of konjac glucomannan-based hydrogels[J]. Journal of Light Industry, 2018, 33(3): 16-29. doi: 10.3969/j.issn.2096-1553.2018.03.003
Citation: LIU Ruixue, LI Yimeng, FAN Xiaomin, et al. Research progress of konjac glucomannan-based hydrogels[J]. Journal of Light Industry, 2018, 33(3): 16-29. doi: 10.3969/j.issn.2096-1553.2018.03.003

魔芋葡甘聚糖基水凝胶的研究进展

  • 基金项目: 国家自然科学基金项目(21474092);河南省留学归国人员择优资助项目(002422)

  • 中图分类号: TQ460.1;TS201.7;X131.2

Research progress of konjac glucomannan-based hydrogels

  • Received Date: 2017-07-26
    Accepted Date: 2018-01-11
    Available Online: 2018-05-15

    CLC number: TQ460.1;TS201.7;X131.2

  • 摘要: 综述了KGM基水凝胶的增强体系及KGM基水凝胶在药物缓释、伤口敷料、生物组织支架等生物医药方面和作为吸附材料在污水处理方面的应用现状,指出具有代表性的新型高强度和高韧性的水凝胶体系为互穿网络水凝胶和双网络水凝胶,二者的主要区别在于是否对聚合物的类型和交联密度有严格的要求;KGM基水凝胶在药物缓释载体、伤口敷料、生物组织支架和吸附剂材料等方面均具有可观的应用潜力.设计合成高强度、高吸水性和降解速度可控的KGM基水凝胶,寻求更多制备功能性KGM基水凝胶的方法,获得具备较佳凝胶时间及优良降解性能、力学特性和吸水功能的KGM基水凝胶材料,为进一步研究KGM功能材料提供理论基础和参考,最终实现其在药物载体、伤口敷料、组织工程等生物医药和重金属的吸附等材料方面的开发与应用,将是未来的研究方向.
    1. [1]

      JANG J,LEE J,SEOL Y J,et al.Improving mechanical properties of alginate hydrogel by reinforcement with ethanol treated polycaprolactone nanofibers[J].Composites Part B:Engineering,2013,45(1):1216.

    2. [2]

      VASHIST A,SHAHABUDDIN S,GUPTA Y K,et al.Polyol induced interpenetrating networks:Chitosan-methylmethacrylate based biocompatible and pH responsive hydrogels for drug delivery system[J].Journal of Materials Chemistry B,2013,1(2):168.

    3. [3]

      SPILLER K L,LIU Y,HOLLOWAY J L,et al.A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels:Controlled release for cartilage tissue engineering[J].Journal of Controlled Release,2012,157(1):39.

    4. [4]

      XIANG S,QIAN W,LI T,et al.Hierarchical structural double network hydrogel with high strength,toughness,and good recoverability[J].New Journal of Chemistry,2017,41(23):14397.

    5. [5]

      AL-GHAZZEWI F,ELAMIR A,TESTER R,et al.Effect of depolymerised konjac glucomannan on wound healing[J].Bioactive Carbohydrates & Dietary Fibre,2015,5(2):125.

    6. [6]

      YI Y,LIN W,JIE P,et al.A review of the development of properties and structures based on konjac glucomannan as functional materials[J].Chinese Journal of Structural Chemistry,2017,36(2):346.

    7. [7]

      LIU J,ZHANG L,HU W,et al.Preparation of konjac glucomannan-based pulsatile capsule for colonic drug delivery system and its evaluation in vitro and in vivo[J].Carbohydrate Polymers,2012,87(1):377.

    8. [8]

      NIU C,WU W,WANG Z,et al.Adsorption of heavy metal ions from aqueous solution by crosslinked carboxymethyl konjac glucomannan[J].Journal of Hazardous Materials,2007,141(1):209.

    9. [9]

      LUAN J,WU K,LI C,et al.pH-sensitive drug delivery system based on hydrophobic modified konjac glucomannan[J].Carbohydrate Polymers,2017,171:9.

    10. [10]

      KATSURAYA K,OKUYAMA K,HATANAKA K,et al.Constitution of konjac glucomannan:Chemical analysis and 13 C NMR spectroscopy[J].Carbohydrate Polymers,2003,53(2):183.

    11. [11]

      王恒洲.魔芋葡甘聚糖薄膜和海绵材料的制备及性能研究[D].武汉:武汉纺织大学,2013.

    12. [12]

      庞杰,吴春华,温成荣,等.魔芋葡甘聚糖凝胶研究进展及其问题[J].中国食品学报,2011,11(9):181.

    13. [13]

      LUO X,HE P,LIN X.The mechanism of sodium hydroxide solution promoting the gelation of Konjac glucomannan (KGM)[J].Food Hydrocolloids,2013,30(1):92.

    14. [14]

      ZHAO Y,NAKAJIMA T,YANG J J,et al.Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels[J].Advanced Materials,2014,26(3):436.

    15. [15]

      LIU Y Y,FAN X D,WEI B R,et al.pH-responsive amphiphilic hydrogel networks with IPN structure:A strategy for controlled drug release[J].International Journal of Pharmaceutics,2006,308(1/2):205.

    16. [16]

      SINGHA N R R,KARMAKAR M,MAHAPATRA M,et al.Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for mere/synergistic superadsorption of dyes/M(Ⅱ):Comprehensive determination of physicochemical changes in loaded hydrogels[J].Polymer Chemistry,2017,8(20):3211.

    17. [17]

      何银亭,詹秀环,田博士,等.聚丙烯酸/聚乙烯醇互穿网络水凝胶制备及其对结晶紫的控制释放性能的研究[J].化工技术与开发,2010(11):13.

    18. [18]

      ILAVSKY M,MAMYTBEKOV G,HANYKOVá L,et al.Phase transition in swollen gels 31.Swelling and mechanical behaviour of interpenetrating networks composed of poly(1-vinyl-2-pyrrolidone) and polyacrylamide in water/acetone mixtures[J].European Polymer Journal,2002,38(5):875.

    19. [19]

      XU Q,HUANG W,JIANG L,et al.KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release[J].Carbohydrate Polymers,2013,97(2):565.

    20. [20]

      LI Z,SU Y,HAQ M A,et al.Konjac glucomannan/polyacrylamide bicomponent hydrogels:Self-healing originating from semi-interpenetrating network[J].Polymer,2016,103:146.

    21. [21]

      GONG J P,KATSUYAMA Y,KUROKAWA T,et al.Double-network hydrogels with extremely high mechanical strength[J].Advanced Materials,2003,15(14):1155.

    22. [22]

      CHEN Q,CHEN H,ZHU L,et al.Fundamentals of double network hydrogels[J].Journal of Materials Chemistry B,2015,3(18):3654.

    23. [23]

      HARAGUCHI K,TAKEHISA T.Nanocomposite hydrogels:A unique organic & ndash;inorganic network structure with extraordinary mechanical,optical,and swelling/De-swelling properties[J].Advanced Materials,2002,14(16):1120.

    24. [24]

      GONG J P.Why are double network hydrogels so tough?[J].Soft Matter,2010,6(12):2583.

    25. [25]

      王茹,王永鑫,陈重一.不同体系的双网络水凝胶及其增强机理[J].材料导报,2015,29(23):41.

    26. [26]

      HAQUE M A,KUROKAWA T,GONG J P.Super tough double network hydrogels and their application as biomaterials[J].Polymer,2012,53(9):1805.

    27. [27]

      LI Z,SU Y,XIE B,et al.A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped[J].Journal of Materials Chemistry B,2015,3(9):1769.

    28. [28]

      CHEN Q,ZHU L,ZHAO C,et al.A robust,one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide[J].Advanced Materials,2013,25(30):4171.

    29. [29]

      LIU M,FAN J,WANG K,et al.Synthesis,characterization,and evaluation of phosphated cross-linked konjac glucomannan hydrogels for colon-targeted drug delivery[J].Drug Delivery,2007,14(6):397.

    30. [30]

      GUPTA K C,RAVIKUMAR M N.Drug release behavior of beads and microgranules of chitosan[J].Biomaterials,2000,21(11):1115.

    31. [31]

      TAKKA S,ACARTURK F.Calcium alginate microparticles for oral administration I:Effect of sodium alginate type on drug release and drug entrapment efficiency[J].Journal of Microencapsulation,2007,16(3):275.

    32. [32]

      SOPPIRNATH K S,AMINABHAVI T M.Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application[J].European Journal of Pharmaceutics & Biopharmaceutics,2002,53(1):87.

    33. [33]

      MI F L,KUAN C Y,SHYU S S,et al.The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release[J].Carbohydrate Polymers,2000,41(4):389.

    34. [34]

      WANG J,LIU C,SHUAI Y,et al.Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels[J].Colloids & Surfaces B Biointerfaces,2014,113(13):223.

    35. [35]

      WANG L,JIANG Y,LIN Y,et al.Rheological properties and formation mechanism of DC electric fields induced konjac glucomannan-tungsten gels[J].Carbohydrate Polymers,2016,142:293.

    36. [36]

      HUANG X,ZHANG Y,ZHANG X,et al.Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing[J].Materials Science & Engineering(C),2013,33(8):4816.

    37. [37]

      FAN L,YI J,TONG J,et al.Preparation and characterization of oxidized konjac glucomannan/carboxymethyl chitosan/graphene oxide hydrogel[J].International Journal of Biological Macromolecules,2016,91:358.

    38. [38]

      SHAHBUDDIN M,BULLOCK A J,MACNEIL S,et al.Glucomannan-poly(N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing[J].Journal of Materials Chemistry B,2014,2(6):727.

    39. [39]

      温辉高,易嘉琰,肖瑶,等.壳聚糖季铵盐/氧化魔芋葡甘露聚糖水凝胶的制备及性能[J].武汉大学学报(理学版),2017(4):305.

    40. [40]

      FENG Y,LI Q,WU D,et al.A macrophage-activating,injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis[J].Biomaterials,2017,134:128.

    41. [41]

      TAI Z,YANG J,QI Y,et al.Synthesis of a graphene oxide-polyacrylic acid nanocomposite hydrogel and its swelling and electroresponsive properties[J].Rsc Advances,2013,3(31):12751.

    42. [42]

      GAN L,SHANG S,HU E,et al.Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange[J].Applied Surface Science,2015,357:866.

    43. [43]

      CHEN J,ZHANG W,LI X.Adsorption of Cu(Ⅱ) ion from aqueous solutions on hydrogel prepared from Konjac glucomannan[J].Polymer Bulletin,2016,73(7):1965.

    1. [1]

      蔡艳荣蒋伟丽常春 . 海洋废弃生物质基吸附材料去除水中重金属离子的研究进展. 轻工学报, 2022, 37(4): 100-110. doi: 10.12187/2022.04.014

    2. [2]

      刘瑞雪陈纪超李迎博 . 基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展. 轻工学报, 2021, 36(6): 110-124. doi: 10.12187/2021.06.013

    3. [3]

      王赫李晶晶魏宏亮王刚楚晖娟朱靖 . 水凝胶在缓/控释肥料中应用的研究进展. 轻工学报, 2017, 32(6): 43-55. doi: 10.3969/j.issn.2096-1553.2017.6.006

    4. [4]

      刘瑞雪樊晓敏李义梦傅晓明张晓静 . 多巯基阳离子共聚物合成与凝胶化反应研究. 轻工学报, 2017, 32(6): 27-34. doi: 10.3969/j.issn.2096-1553.2017.6.004

    5. [5]

      寇先勇吴燕王峣姿冯文博郑佳贝尤祥宇苏江涛 . 5种中药粗多糖水凝胶的制备及其促伤口愈合能力研究. 轻工学报, 2024, 39(2): 43-53. doi: 10.12187/2024.02.006

    6. [6]

      张肖静庞龙何领好王明花陈砚张治红 . 壳聚糖-聚乙烯醇复合水凝胶对水体和土壤中总砷的吸附性能研究. 轻工学报, 2017, 32(1): 58-64. doi: 10.3969/j.issn.2096-1553.2017.1.009

    7. [7]

      罗钰湲李辛娅梁佳翔刘泓漾代笛菲郭小玲戴宏杰 . 菠萝皮渣纤维素/皂土复合水凝胶的制备及其染料吸附性能. 轻工学报, 2022, 37(5): 41-49. doi: 10.12187/2022.05.005

    8. [8]

      吉笑盈李晓鹏刘娟李东亮吴迪王义赵丽娟 . 智能调湿水凝胶材料的制备及其在便携式雪茄保湿袋中的应用. 轻工学报, 2023, 38(5): 88-95. doi: 10.12187/2023.05.012

    9. [9]

      刘瑞雪李迎博李义梦周腾 . 壳聚糖-柠檬酸/聚丙烯酰胺双网络水凝胶的构筑与性能研究. 轻工学报, 2020, 35(1): 63-71. doi: 10.12187/2020.01.008

    10. [10]

      刘瑞雪周腾樊晓敏李云秋冯皓泽 . 明胶基复合水凝胶研究进展. 轻工学报, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006

    11. [11]

      樊凯奇贾彩敬赵帅岳凡韩光鲁王利霞尹志刚宋健 . 高弹性双网络水凝胶的制备及其性能研究. 轻工学报, 2017, 32(6): 35-42. doi: 10.3969/j.issn.2096-1553.2017.6.005

    12. [12]

      刘瑞雪陈纪超李迎博周腾王亚玲 . 明胶/聚甲基丙烯酸复合水凝胶的制备及其性能研究. 轻工学报, 2020, 35(6): 50-59. doi: 10.12187/2020.06.007

    13. [13]

      刘瑞雪李迎博陈纪超 . 基于pH调节的CMCS-PMMS/PAAm复合水凝胶的构筑与性能研究. 轻工学报, 2021, 36(2): 64-73. doi: 10.12187/2021.02.009

    14. [14]

      徐燕刘伟于观成王智军黄学金 . 十水硫酸钠储热材料在农业大棚中的应用. 轻工学报, 2011, 26(2): 98-100. doi: 10.3969/j.issn.1004-1478.2011.02.025

    15. [15]

      黄改玲王东蒋玲周婧赵玉成 . Mg2Al-LS-LDH复合材料的制备及吸附性能研究. 轻工学报, 2015, 30(5-6): 12-16. doi: 10.3969/j.issn.2095-476X.2015.5/6.003

    16. [16]

      望运滔陈曦梁晴陈静栗俊广 . 魔芋胶与卡拉胶复配对热诱导大豆分离蛋白乳液凝胶特性的影响. 轻工学报, 2023, 38(5): 17-25. doi: 10.12187/2023.05.003

    17. [17]

      张瑜薛雨舒沈乙杰宋凯若王丰俊 . 超声处理对蜂蜡-单甘酯基核桃油凝胶结构与性质的影响. 轻工学报, 2024, 39(1): 12-21. doi: 10.12187/2024.01.002

    18. [18]

      谢文菊王志涛张林森金恺吴方棣 . 溶胶-凝胶法制备ZnWO4负极材料及其电化学性能研究. 轻工学报, 2015, 30(2): 11-15,21. doi: 10.3969/j.issn.2095-476X.2015.02.003

    19. [19]

      董吉林田广瑞李建光高安华申瑞玲 . 燕麦β-葡聚糖/大豆分离蛋白混合体系凝胶性研究. 轻工学报, 2011, 26(1): 30-33. doi: 10.3969/j.issn.1004-1478.2011.01.008

    20. [20]

      杨锡洪辛荣玉张景禹于文露张俊逸李钰金解万翠 . EDTA-壳聚糖的制备及其对Cd2+的吸附作用研究. 轻工学报, 2018, 33(6): 1-7. doi: 10.3969/j.issn.2096-1553.2018.06.001

  • 加载中
计量
  • PDF下载量:  24
  • 文章访问数:  1304
  • 引证文献数: 0
文章相关
  • 收稿日期:  2017-07-26
  • 修回日期:  2018-01-11
  • 刊出日期:  2018-05-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
刘瑞雪, 李义梦, 樊晓敏, 等. 魔芋葡甘聚糖基水凝胶的研究进展[J]. 轻工学报, 2018, 33(3): 16-29. doi: 10.3969/j.issn.2096-1553.2018.03.003
引用本文: 刘瑞雪, 李义梦, 樊晓敏, 等. 魔芋葡甘聚糖基水凝胶的研究进展[J]. 轻工学报, 2018, 33(3): 16-29. doi: 10.3969/j.issn.2096-1553.2018.03.003
LIU Ruixue, LI Yimeng, FAN Xiaomin, et al. Research progress of konjac glucomannan-based hydrogels[J]. Journal of Light Industry, 2018, 33(3): 16-29. doi: 10.3969/j.issn.2096-1553.2018.03.003
Citation: LIU Ruixue, LI Yimeng, FAN Xiaomin, et al. Research progress of konjac glucomannan-based hydrogels[J]. Journal of Light Industry, 2018, 33(3): 16-29. doi: 10.3969/j.issn.2096-1553.2018.03.003

魔芋葡甘聚糖基水凝胶的研究进展

  • 郑州轻工业学院 材料与化学工程学院, 河南 郑州 450001
基金项目:  国家自然科学基金项目(21474092);河南省留学归国人员择优资助项目(002422)

摘要: 综述了KGM基水凝胶的增强体系及KGM基水凝胶在药物缓释、伤口敷料、生物组织支架等生物医药方面和作为吸附材料在污水处理方面的应用现状,指出具有代表性的新型高强度和高韧性的水凝胶体系为互穿网络水凝胶和双网络水凝胶,二者的主要区别在于是否对聚合物的类型和交联密度有严格的要求;KGM基水凝胶在药物缓释载体、伤口敷料、生物组织支架和吸附剂材料等方面均具有可观的应用潜力.设计合成高强度、高吸水性和降解速度可控的KGM基水凝胶,寻求更多制备功能性KGM基水凝胶的方法,获得具备较佳凝胶时间及优良降解性能、力学特性和吸水功能的KGM基水凝胶材料,为进一步研究KGM功能材料提供理论基础和参考,最终实现其在药物载体、伤口敷料、组织工程等生物医药和重金属的吸附等材料方面的开发与应用,将是未来的研究方向.

English Abstract

参考文献 (43) 相关文章 (20)

目录

/

返回文章