JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

明胶基复合水凝胶研究进展

刘瑞雪 周腾 樊晓敏 李云秋 冯皓泽

刘瑞雪, 周腾, 樊晓敏, 等. 明胶基复合水凝胶研究进展[J]. 轻工学报, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006
引用本文: 刘瑞雪, 周腾, 樊晓敏, 等. 明胶基复合水凝胶研究进展[J]. 轻工学报, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006
LIU Ruixue, ZHOU Teng, FAN Xiaomin, et al. Research progress in gelatin-based composite hydrogel[J]. Journal of Light Industry, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006
Citation: LIU Ruixue, ZHOU Teng, FAN Xiaomin, et al. Research progress in gelatin-based composite hydrogel[J]. Journal of Light Industry, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006

明胶基复合水凝胶研究进展

    作者简介: 刘瑞雪(1971-),女,河南省范县人,郑州轻工业学院副教授,博士,主要研究方向为高分子水凝胶、功能高分子材料.;
  • 基金项目: 国家自然科学基金项目(21474092);河南省留学归国人员择优资助项目;郑州轻工业学院博士基金项目

  • 中图分类号: TQ431.3

Research progress in gelatin-based composite hydrogel

  • Received Date: 2017-08-23
    Accepted Date: 2018-01-12

    CLC number: TQ431.3

  • 摘要: 从明胶的交联改性、与其他高分子共混(包括互穿网络及双网络)和与纳米材料复合三方面对国内外关于明胶基复合水凝胶的力学性能增强与功能化的研究现状进行了综述,指出,相较于物理交联改性,明胶的化学交联改性应用更为广泛,但过多的化学交联剂用量会产生一定的毒性;互穿网络能够结合明胶与其他聚合物网络的性质,而双网络的拓扑结构能够极大地提升明胶基复合水凝胶的力学性能;将不同纳米粒子或具有特殊功能的纳米粒子引入明胶体系中能避免传统化学交联剂产生的毒性,获得具有高拉伸强度的功能化明胶基纳米复合水凝胶.进一步优化设计合成具有与生物组织相适宜的力学强度、生物相容性和组织粘附性的明胶基水凝胶材料,以提高其在复杂环境中的机械性能和刺激响应性能,将会是未来的研究方向.
    1. [1]

      YOUNG S,WONG M,TABATA Y,et al.Gelatin as a delivery vehicle for the controlled release of bioactive molecules[J].Journal of Controlled Release,2005,109(1/3):256.

    2. [2]

      ELZOGHBY A O,SAMY W M,ELGINDY N A.Protein-based nanocarriers as promising drug and gene delivery systems[J].Journal of Controlled Release,2012,161(1):38.

    3. [3]

      WANG H,BOERMAN O C,SARⅡBRAHIMOGLU K,et al.Comparison of micro-vs.nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins:Bone morphogenetic protein-2 and alkaline phosphatase[J].Biomaterials,2012,33(33):8695.

    4. [4]

      BHAT R,KARIM A A.Ultraviolet irradiation improves gel strength of fish gelatin[J].Food Chemistry,2009,113(4):1160.

    5. [5]

      LIGUORI A,BIGI A,COLOMBO V,et al.Atmospheric pressure non-equilibrium plasma as a green tool to crosslink gelatin nanofibers[J].Scientific Reports,2016,6:38542.

    6. [6]

      SILVA M A D,KANG J,BUI T T T,et al.Tightening of gelatin chemically crosslinked networks assisted by physical gelation[J].Journal of Polymer Science B Polymer Physics,2017,55(24):1850.

    7. [7]

      NADZIR M M,MUN L S,CHAN P J.Characterization of genipin-crosslinked gelatin hydrogel loaded with curcumin[J].Journal of Engineering and Applied Sciences,2017,12(9):2294.

    8. [8]

      THI P L,LEE Y,DAI H N,et al.In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness[J].Journal of Materials Chemistry B,2016,5(4):757.

    9. [9]

      MYUNG D,WATERS D,WISEMAN M,et al.Progress in the development of interpenetrating polymer network hydrogels[J].Polymers for Advanced Technologies,2008,19(6):647.

    10. [10]

      SPERLING L H.Interpenetrating polymer networks and related materials[J].Chemistry & Properties of Crosslinked Polymers,1981,12(1):141.

    11. [11]

      SPERLING L H,CHIU T W,HARTMAN C P,et al.Latex interpenetrating polymer networks[J].Angewandte Chemie International Edition,1978,17(2):149.

    12. [12]

      HOFFMAN A S.Hydrogels for biomedical applications[J].Advanced Drug Delivery Reviews,2012,64:18.

    13. [13]

      SHEN C,LI Y,WANG H,et al.Mechanically strong interpenetrating network hydrogels for differential cellular adhesion[J].Rsc Advances,2017,7(29):18046.

    14. [14]

      WANG J,WEI J.Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings[J].Materials Science & Engineering C,2017,80:460.

    15. [15]

      SHEN Z S,CUI X,HOU R X,et al.Tough biodegradable chitosan-gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering[J].Rsc Advances,2015,5(69):55640.

    16. [16]

      YU Z,ZHANG Y,GAO Z J,et al.Enhancing mechanical strength of hydrogels via IPN structure[J].Journal of Applied Polymer Science,2016,134(8):44503.

    17. [17]

      PETTIGNANO A,HARING M,BERNARDI L,et al.Self-healing alginate-gelatin biohydrogels based on dynamic covalent chemistry:elucidation of key parameters[J].Materials Chemistry Frontiers,2017,1(1):73.

    18. [18]

      GAN Y,LI P,WANG L,et al.An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration[J].Biomaterials,2017,136:12.

    19. [19]

      ZHANG J,WANG J,ZHANG H,et al.Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration[J].Biomed Mater,2016,11(3):035014.

    20. [20]

      MIAO T,MILLER E J,MCKENZIE C,et al.Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration[J].Journal of Materials Chemistry B,2015,3(48):9242.

    21. [21]

      ZHANG Z,LIU Y,CHEN X,et al.Multi-responsive polyethylene-polyamine/gelatin hydrogel induced by non-covalent interactions[J].Rsc Advances,2016,6(54):48661.

    22. [22]

      王茹,王永鑫,陈重一.不同体系的双网络水凝胶及其增强机理[J].材料导报,2015,29(23):41.

    23. [23]

      GONG J P,KATSUYAMA Y,KUROKAWA T,et al.Double-network hydrogels with extremely high mechanical strength[J].Advanced Materials,2003,15(14):1155.

    24. [24]

      HOU J,REN X,GUAN S,et al.Rapidly recoverable,anti-fatigue,super-tough double-network hydrogels reinforced by macromolecular microspheres[J].Soft Matter,2017,13(7):1357.

    25. [25]

      YAN X,CHEN Q,ZHU L,et al.High strength and self-healable gelatin/polyacrylamide double network hydrogels[J].Journal of Materials Chemistry B,2017,5(37):7683.

    26. [26]

      SANTIN M,HUANG S J,IANNACE S,et al.Synthesis and characterization of a new interpenetrated poly(2-hydroxyethylmethacrylate)-gelatin composite polymer[J].Biomaterials,1996,17(15):1459.

    27. [27]

      HARAGUCHI K,TAKADA T.Characteristic sliding frictional behavior on the surface of nanocomposite hydrogels consisting of organic-inorganic network structure[J].Macromolecular Chemistry & Physics,2005,206(15):1530.

    28. [28]

      HARAGUCHI K,TORU TAKERHISA A,FAN S.Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay[J].Macromolecules,2002,35(27):10162.

    29. [29]

      HARAGUCHI K.Nanocomposite hydrogels[J].Current Opinion in Solid State & Materials Science,2007,11(3):47.

    30. [30]

      GAHARWAR A K,PEPPAS N A,KHADEMHOSSEINI A.Nanocomposite hydrogels for biomedical applications[J].Biotechnol Bioeng,2014,111(3):441.

    31. [31]

      LI C,MU C,LIN W,et al.Gelatin effects on the physicochemical and hemocompatible properties of gelatin/PAAm/Laponite nanocomposite hydrogels[J].ACS Appl Mater Interfaces,2015,7(33):18732.

    32. [32]

      RAN J,JIANG P,LIU S,et al.Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering[J].Materials Science and Engineering C,2017,78:130.

    33. [33]

      GARCIAASTRAIN C,CHEN C,BURON M,et al.Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles[J].Biomacromolecules,2015,16(4):1301.

    34. [34]

      BARBUCCI R,PASQUI D,GIANI G,et al.A novel strategy for engineering hydrogels with ferromagnetic nanoparticles as crosslinkers of the polymer chains.Potential applications as a targeted drug delivery system[J].Soft Matter,2011,7(12):5558.

    35. [35]

      DEMARCHI C A,DEBRASSI A,BUZZI F C,et al.A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery:synthesis,characterization and in vitro drug release[J].Soft Matter,2014,10(19):3441.

    36. [36]

      GAHARWAR A K,PEPPAS N A,KHADEMHOSSEINI A.Nanocomposite hydrogels for biomedical applications[J].Biotechnology & Bioengineering,2014,111(3):441.

    37. [37]

      NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Materials and methods:electric field effect in atomically thin carbon films[J].Science,2004(306):666.

    38. [38]

      CHUNG C,KIM Y K,SHIN D,et al.Biomedical applications of graphene and graphene oxide[J].Accounts of Chemical Research,2013,46(10):2211.

    39. [39]

      COMPTON O C,CRANFORD S W,PUTZ K W,et al.Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding[J].Acs Nano,2012,6(3):2008.

    40. [40]

      SOLDANO C,MAHMOOD A,DUJARDIN E.Production,properties and potential of graphene[J].Carbon,2010,48(8):2127.

    41. [41]

      WEI P,BAO W,PU Y,et al.Anomalous thermoelectric transport of dirac particles in graphene[J].Physical Review Letters,2009,102(16):166808.

    42. [42]

      ZHU J,CHEN M,HE Q,et al.An overview of the engineered graphene nanostructures and nanocomposites[J].Rsc Advances,2013,3(45):22790.

    43. [43]

      HUANG J,ZHAO L,WANG T,et al.NIR-Triggered rapid shape memory PAM-GO-Gelatin hydrogels with high mechanical strength[J].Acs Applied Materials & Interfaces,2016,8(19):12384.

    44. [44]

      PIAO Y,CHEN B.One-pot synthesis and characterization of reduced graphene oxide-gelatin nanocomposite hydrogels[J].Rsc Advances,2016,6(8):6171.

    45. [45]

      HASSANZADEH P,KAZEMZADEHNARBAT M,ROSENZWEIG R,et al.Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA)[J].J Mater Chem B Mater Biol Med,2016,4(15):2539.

    46. [46]

      NAN L,WEI C,CHEN G,et al.Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength[J].Carbohydrate Polymers,2017,171:77.

    1. [1]

      樊凯奇贾彩敬赵帅岳凡韩光鲁王利霞尹志刚宋健 . 高弹性双网络水凝胶的制备及其性能研究. 轻工学报, 2017, 32(6): 35-42. doi: 10.3969/j.issn.2096-1553.2017.6.005

    2. [2]

      刘瑞雪陈纪超李迎博周腾王亚玲 . 明胶/聚甲基丙烯酸复合水凝胶的制备及其性能研究. 轻工学报, 2020, 35(6): 50-59. doi: 10.12187/2020.06.007

    3. [3]

      刘瑞雪李迎博李义梦周腾 . 壳聚糖-柠檬酸/聚丙烯酰胺双网络水凝胶的构筑与性能研究. 轻工学报, 2020, 35(1): 63-71. doi: 10.12187/2020.01.008

    4. [4]

      陈雪刘文博董鑫成朋 . 三维双孔径夹层状纳米多孔Cu/Cu6Sn5/Sn复合电极的制备及其电化学性能研究. 轻工学报, 2018, 33(5): 83-89. doi: 10.3969/j.issn.2096-1553.2018.05.011

    5. [5]

      彭东来张帅张治红何领好 . 石墨烯基/金纳米复合材料制备及应用述评. 轻工学报, 2014, 29(5): 23-27. doi: 10.3969/j.issn.2095-476X.2014.05.005

    6. [6]

      姜龙波吕静张喜文李萍杜文娟张桂英申瑞玲 . 小米糠膳食纤维复合酶法改性工艺优化. 轻工学报, 2017, 32(5): 16-23. doi: 10.3969/j.issn.2096-1553.2017.5.003

    7. [7]

      成军祥张艳 . 双复合二项风险模型的破产概率. 轻工学报, 2015, 30(2): 102-104. doi: 10.3969/j.issn.2095-476X.2015.02.022

    8. [8]

      刘瑞雪李迎博陈纪超 . 基于pH调节的CMCS-PMMS/PAAm复合水凝胶的构筑与性能研究. 轻工学报, 2021, 36(2): 64-73. doi: 10.12187/2021.02.009

    9. [9]

      王明花杨光张园厂康萌萌何领好冯孝中彭东来张治红 . DNA在石墨烯/金纳米/聚吡咯复合材料上的固定及杂交. 轻工学报, 2014, 29(4): 6-11. doi: 10.3969/j.issn.2095-476X.2014.04.002

    10. [10]

      张治红时宇刘顺利闫福丰冯孝中 . 氧化亚铜/石墨烯纳米复合材料的制备及性能研究. 轻工学报, 2013, 28(2): 44-48. doi: 10.3969/j.issn.2095-476X.2013.02.011

    11. [11]

      王林陈晔 . 纳米复合双层防垢涂层的制备及其性能研究. 轻工学报, 2017, 32(1): 65-71. doi: 10.3969/j.issn.2096-1553.2017.1.010

    12. [12]

      罗钰湲李辛娅梁佳翔刘泓漾代笛菲郭小玲戴宏杰 . 菠萝皮渣纤维素/皂土复合水凝胶的制备及其染料吸附性能. 轻工学报, 2022, 37(5): 41-49. doi: 10.12187/2022.05.005

    13. [13]

      桂阳海孔华杰刘贝贝付柯瑞王槐顺袁朝圣 . WO3纳米棒/石墨烯复合材料的制备及其气敏性能研究. 轻工学报, 2015, 30(5-6): 7-11. doi: 10.3969/j.issn.2095-476X.2015.5/6.002

    14. [14]

      朱灵峰孙倩高如琴贾梦哲赵幸幸吕昌昌赵玉驰秦梦涛 . 纳米TiO2/硅藻土基多孔陶粒复合材料的制备及其甲醛去除效果研究. 轻工学报, 2018, 33(2): 1-6. doi: 10.3969/j.issn.2096-1553.2018.02.001

    15. [15]

      张肖静庞龙何领好王明花陈砚张治红 . 壳聚糖-聚乙烯醇复合水凝胶对水体和土壤中总砷的吸附性能研究. 轻工学报, 2017, 32(1): 58-64. doi: 10.3969/j.issn.2096-1553.2017.1.009

    16. [16]

      王宜鹏韩龙洋孙学辉孙培健杨松贾云祯张晓兵聂聪 . 改性GPA降低纸-醋二元复合滤棒卷烟主流烟气中苯酚释放量的研究. 轻工学报, 2022, 37(4): 66-72. doi: 10.12187/2022.04.009

    17. [17]

      刘星洁侯娟田数贾学伟李天笑许春平 . 基于氧化香菇多糖金纳米簇复合物的电化学发光在腐胺检测中的应用. 轻工学报, 2023, 38(5): 36-41,67. doi: 10.12187/2023.05.005

    18. [18]

      张旭鑫张书艳赵雷朱杰 . 纳米淀粉对含香茅醇马铃薯淀粉-壳聚糖复合膜材多尺度结构和热稳定性的影响. 轻工学报, 2023, 38(1): 27-33. doi: 10.12187/2023.01.004

    19. [19]

      解相朋杨录山 . 基于智能优化型径向基神经网络的板形模式识别研究. 轻工学报, 2012, 27(3): 89-92. doi: 10.3969/j.issn.1004-1478.2012.03.024

    20. [20]

      高红霞王蒙 . 原位反应剂质量分数对复合强化法制备混杂颗粒增强铝基复合材料的影响. 轻工学报, 2020, 35(5): 48-54. doi: 10.12187/2020.05.007

  • 加载中
计量
  • PDF下载量:  32
  • 文章访问数:  1702
  • 引证文献数: 0
文章相关
  • 收稿日期:  2017-08-23
  • 修回日期:  2018-01-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
刘瑞雪, 周腾, 樊晓敏, 等. 明胶基复合水凝胶研究进展[J]. 轻工学报, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006
引用本文: 刘瑞雪, 周腾, 樊晓敏, 等. 明胶基复合水凝胶研究进展[J]. 轻工学报, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006
LIU Ruixue, ZHOU Teng, FAN Xiaomin, et al. Research progress in gelatin-based composite hydrogel[J]. Journal of Light Industry, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006
Citation: LIU Ruixue, ZHOU Teng, FAN Xiaomin, et al. Research progress in gelatin-based composite hydrogel[J]. Journal of Light Industry, 2018, 33(6): 42-54,81. doi: 10.3969/j.issn.2096-1553.2018.06.006

明胶基复合水凝胶研究进展

    作者简介:刘瑞雪(1971-),女,河南省范县人,郑州轻工业学院副教授,博士,主要研究方向为高分子水凝胶、功能高分子材料.
  • 郑州轻工业学院 材料与化学工程学院, 河南 郑州 450001
基金项目:  国家自然科学基金项目(21474092);河南省留学归国人员择优资助项目;郑州轻工业学院博士基金项目

摘要: 从明胶的交联改性、与其他高分子共混(包括互穿网络及双网络)和与纳米材料复合三方面对国内外关于明胶基复合水凝胶的力学性能增强与功能化的研究现状进行了综述,指出,相较于物理交联改性,明胶的化学交联改性应用更为广泛,但过多的化学交联剂用量会产生一定的毒性;互穿网络能够结合明胶与其他聚合物网络的性质,而双网络的拓扑结构能够极大地提升明胶基复合水凝胶的力学性能;将不同纳米粒子或具有特殊功能的纳米粒子引入明胶体系中能避免传统化学交联剂产生的毒性,获得具有高拉伸强度的功能化明胶基纳米复合水凝胶.进一步优化设计合成具有与生物组织相适宜的力学强度、生物相容性和组织粘附性的明胶基水凝胶材料,以提高其在复杂环境中的机械性能和刺激响应性能,将会是未来的研究方向.

English Abstract

参考文献 (46) 相关文章 (20)

目录

/

返回文章