基于语义规则和表情加权的中文微博情感分析方法
Chinese micro-blog emotional analysis method based on semantic rules and expression weighting
-
摘要: 针对目前中文微博情感分析方法考虑因素不全面,从而导致情感分析结果欠佳的问题,提出一种基于语义规则和表情加权的中文微博情感分析方法.该方法在使用传统情感词典分析中文微博情感倾向的基础上,在普通情感词典中融入否定词、程度副词和网络新词,根据中文微博文本独有的语言特点和句式特点,采用从词语到分句再到复句的方式对整个中文微博进行情感分析,进而使用表情加权和语义规则进行权值求和,以确定情感倾向.实验结果表明,较另外3种中文微博情感分析方法,该方法效果更显著,其平均准确率为78.4%,平均查全率为75.2%,平均F值为76.7%.Abstract: Aiming at the problem that the current Chinese micro-blog emotional analysis methods were not comprehensive, which led to poor sentiment analysis results, a Chinese micro-blog emotional analysis method based on semantic rules and expression weighting was proposed.On the basis of using traditional emotion dictionary to analyze the emotion tendency of Chinese micro-blog, negative words, degree adverbs and network neologisms were incorporated into the general emotion dictionary.According to the unique language characteristics and sentence pattern characteristics of Chinese micro-blog text, the method of emotional analysis from words to clauses and then to complex sentences was adopted to analyze the whole Chinese micro-blog.Expression weighting and semantic rules were used to perform weight summation to determine emotional tendency.The experimental results showed that compared with the other three Chinese micro-blog emotional analysis methods,the proposed method was more effective.It had an average precision rate of 78.4%, an average recall rate of 75.2%, and an average F value of 76.7%.
-
Key words:
- micro-blog emotion /
- emoticon /
- emotional word /
- semantic rules
-
-
[1]
YU Y.Text emotional analysis based on Twitter data[J].Information and Computer,2018,46(19):151.
-
[2]
PAK A,PAROUBEK P.Twitter as a corpus for sentiment analysis and opinion mining[C]//European Language Resource Association.Proceedings of International Conference on Language Resource and Evaluation.Valletta:LREC,2010:1320.
-
[3]
RILOFF E,WIEBE J.Learning extraction patterns for subjective expressions[C]//Association for Computational Linguistics.Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing(EMNLP-03).Sapporo:EMNLP,2013:105.
-
[4]
朱嫣岚,闵锦,周雅倩,等.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006(1):14.
-
[5]
谭皓,邓树文,钱涛,等.基于表情符注意力机制的微博情感分析模型[J].计算机应用研究,2019,36(9):2647.
-
[6]
李继东.基于扩展词典和规则的中文微博情感分析[D].北京:北京交通大学,2018.
-
[7]
王文,王树锋,李洪华.基于文本语义和表情倾向的微博情感分析方法[J].南京理工大学学报(自然科学版),2014(6):733.
-
[8]
刘志明,刘鲁.基于机器学习的中文微博情感分类实证研究[J].计算机工程与应用,2012,48(1):1.
-
[9]
于韬,李伟,代丽伟.基于Python的新浪新闻爬虫系统的设计与实现[J].电子技术与软件工程,2018(9):188.
-
[10]
林江豪,顾也力,周咏梅,等.基于表情符号的情感词典的构建研究[J].计算机技术与发展,2019,29(6):181.
-
[11]
梁亚伟.基于表情词典的中文微博情感分析模型研究[J].现代计算机(专业版),2015(21):7.
-
[12]
宋沛玉.面向中文微博情感分析的多特征融合方法研究[D].广州:广东工业大学,2018.
-
[13]
蔺璜,郭姝慧.程度副词的特点范围与分类[J].山西大学学报(哲学社会科学版),2003(2):71.
-
[14]
杨立月,王移芝.微博情感分析的情感词典构造及分析方法研究[J].计算机技术与发展,2019,29(2):13.
-
[15]
姜杰,夏睿.机器学习与语义规则融合的微博情感分类方法[J].北京大学学报(自然科学版),2017,53(2):247.
-
[16]
陈国兰.基于情感词典与语义规则的微博情感分析[J].情报探索,2016(2):1.
-
[17]
赵天奇,姚海鹏,方超,等.语义规则与表情加权融合的微博情感分析方法[J].重庆邮电大学学报(自然科学版),2016,28(4):503.
-
[18]
王志涛,於志文,郭斌,等.基于词典和规则集的中文微博情感分析[J].计算机工程与应用,2015,51(8):218.
-
[1]
计量
- PDF下载量: 18
- 文章访问数: 1777
- 引证文献数: 0