JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

基于语义规则和表情加权的中文微博情感分析方法

朱颢东 李雯琦

朱颢东, 李雯琦. 基于语义规则和表情加权的中文微博情感分析方法[J]. 轻工学报, 2020, 35(2): 74-82. doi: 10.12187/2020.02.010
引用本文: 朱颢东, 李雯琦. 基于语义规则和表情加权的中文微博情感分析方法[J]. 轻工学报, 2020, 35(2): 74-82. doi: 10.12187/2020.02.010
ZHU Haodong and LI Wenqi. Chinese micro-blog emotional analysis method based on semantic rules and expression weighting[J]. Journal of Light Industry, 2020, 35(2): 74-82. doi: 10.12187/2020.02.010
Citation: ZHU Haodong and LI Wenqi. Chinese micro-blog emotional analysis method based on semantic rules and expression weighting[J]. Journal of Light Industry, 2020, 35(2): 74-82. doi: 10.12187/2020.02.010

基于语义规则和表情加权的中文微博情感分析方法

    作者简介: 朱颢东(1980-),男,河南省虞城县人,郑州轻工业大学副教授,博士,主要研究方向为智能信息处理与智能计算.;
  • 基金项目: 河南省高等学校重点科研项目(19A520009)

  • 中图分类号: TP301

Chinese micro-blog emotional analysis method based on semantic rules and expression weighting

  • Received Date: 2019-10-08

    CLC number: TP301

  • 摘要: 针对目前中文微博情感分析方法考虑因素不全面,从而导致情感分析结果欠佳的问题,提出一种基于语义规则和表情加权的中文微博情感分析方法.该方法在使用传统情感词典分析中文微博情感倾向的基础上,在普通情感词典中融入否定词、程度副词和网络新词,根据中文微博文本独有的语言特点和句式特点,采用从词语到分句再到复句的方式对整个中文微博进行情感分析,进而使用表情加权和语义规则进行权值求和,以确定情感倾向.实验结果表明,较另外3种中文微博情感分析方法,该方法效果更显著,其平均准确率为78.4%,平均查全率为75.2%,平均F值为76.7%.
    1. [1]

      YU Y.Text emotional analysis based on Twitter data[J].Information and Computer,2018,46(19):151.

    2. [2]

      PAK A,PAROUBEK P.Twitter as a corpus for sentiment analysis and opinion mining[C]//European Language Resource Association.Proceedings of International Conference on Language Resource and Evaluation.Valletta:LREC,2010:1320.

    3. [3]

      RILOFF E,WIEBE J.Learning extraction patterns for subjective expressions[C]//Association for Computational Linguistics.Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing(EMNLP-03).Sapporo:EMNLP,2013:105.

    4. [4]

      朱嫣岚,闵锦,周雅倩,等.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006(1):14.

    5. [5]

      谭皓,邓树文,钱涛,等.基于表情符注意力机制的微博情感分析模型[J].计算机应用研究,2019,36(9):2647.

    6. [6]

      李继东.基于扩展词典和规则的中文微博情感分析[D].北京:北京交通大学,2018.

    7. [7]

      王文,王树锋,李洪华.基于文本语义和表情倾向的微博情感分析方法[J].南京理工大学学报(自然科学版),2014(6):733.

    8. [8]

      刘志明,刘鲁.基于机器学习的中文微博情感分类实证研究[J].计算机工程与应用,2012,48(1):1.

    9. [9]

      于韬,李伟,代丽伟.基于Python的新浪新闻爬虫系统的设计与实现[J].电子技术与软件工程,2018(9):188.

    10. [10]

      林江豪,顾也力,周咏梅,等.基于表情符号的情感词典的构建研究[J].计算机技术与发展,2019,29(6):181.

    11. [11]

      梁亚伟.基于表情词典的中文微博情感分析模型研究[J].现代计算机(专业版),2015(21):7.

    12. [12]

      宋沛玉.面向中文微博情感分析的多特征融合方法研究[D].广州:广东工业大学,2018.

    13. [13]

      蔺璜,郭姝慧.程度副词的特点范围与分类[J].山西大学学报(哲学社会科学版),2003(2):71.

    14. [14]

      杨立月,王移芝.微博情感分析的情感词典构造及分析方法研究[J].计算机技术与发展,2019,29(2):13.

    15. [15]

      姜杰,夏睿.机器学习与语义规则融合的微博情感分类方法[J].北京大学学报(自然科学版),2017,53(2):247.

    16. [16]

      陈国兰.基于情感词典与语义规则的微博情感分析[J].情报探索,2016(2):1.

    17. [17]

      赵天奇,姚海鹏,方超,等.语义规则与表情加权融合的微博情感分析方法[J].重庆邮电大学学报(自然科学版),2016,28(4):503.

    18. [18]

      王志涛,於志文,郭斌,等.基于词典和规则集的中文微博情感分析[J].计算机工程与应用,2015,51(8):218.

  • 加载中
计量
  • PDF下载量:  18
  • 文章访问数:  1777
  • 引证文献数: 0
文章相关
  • 收稿日期:  2019-10-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
朱颢东, 李雯琦. 基于语义规则和表情加权的中文微博情感分析方法[J]. 轻工学报, 2020, 35(2): 74-82. doi: 10.12187/2020.02.010
引用本文: 朱颢东, 李雯琦. 基于语义规则和表情加权的中文微博情感分析方法[J]. 轻工学报, 2020, 35(2): 74-82. doi: 10.12187/2020.02.010
ZHU Haodong and LI Wenqi. Chinese micro-blog emotional analysis method based on semantic rules and expression weighting[J]. Journal of Light Industry, 2020, 35(2): 74-82. doi: 10.12187/2020.02.010
Citation: ZHU Haodong and LI Wenqi. Chinese micro-blog emotional analysis method based on semantic rules and expression weighting[J]. Journal of Light Industry, 2020, 35(2): 74-82. doi: 10.12187/2020.02.010

基于语义规则和表情加权的中文微博情感分析方法

    作者简介:朱颢东(1980-),男,河南省虞城县人,郑州轻工业大学副教授,博士,主要研究方向为智能信息处理与智能计算.
  • 郑州轻工业大学 计算机与通信工程学院 河南 郑州 450001
基金项目:  河南省高等学校重点科研项目(19A520009)

摘要: 针对目前中文微博情感分析方法考虑因素不全面,从而导致情感分析结果欠佳的问题,提出一种基于语义规则和表情加权的中文微博情感分析方法.该方法在使用传统情感词典分析中文微博情感倾向的基础上,在普通情感词典中融入否定词、程度副词和网络新词,根据中文微博文本独有的语言特点和句式特点,采用从词语到分句再到复句的方式对整个中文微博进行情感分析,进而使用表情加权和语义规则进行权值求和,以确定情感倾向.实验结果表明,较另外3种中文微博情感分析方法,该方法效果更显著,其平均准确率为78.4%,平均查全率为75.2%,平均F值为76.7%.

English Abstract

参考文献 (18)

目录

/

返回文章