JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

数据融合策略在食用油真实性鉴别中的研究与应用进展

李艳坤 张伟 刘彦伶

李艳坤, 张伟, 刘彦伶. 数据融合策略在食用油真实性鉴别中的研究与应用进展[J]. 轻工学报, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006
引用本文: 李艳坤, 张伟, 刘彦伶. 数据融合策略在食用油真实性鉴别中的研究与应用进展[J]. 轻工学报, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006
LI Yankun, ZHANG Wei and LIU Yanling. Research and application progress of data fusion strategy in authenticity identification of edible oil[J]. Journal of Light Industry, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006
Citation: LI Yankun, ZHANG Wei and LIU Yanling. Research and application progress of data fusion strategy in authenticity identification of edible oil[J]. Journal of Light Industry, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006

数据融合策略在食用油真实性鉴别中的研究与应用进展

    作者简介: 李艳坤(1977—),女,河北省邯郸市人,华北电力大学副教授,博士,主要研究方向为化学计量学、环境分析化学。E-mail:liyankun_ncepu@foxmail.com;
  • 基金项目: 国创计划资助项目(S202310079127)
    中央高校基本科研业务费项目(2017MS135)

  • 中图分类号: O657.3;TS227

Research and application progress of data fusion strategy in authenticity identification of edible oil

  • Received Date: 2023-11-15
    Accepted Date: 2024-01-18
    Available Online: 2024-10-15

    CLC number: O657.3;TS227

  • 摘要: 对基于光谱、质谱、色谱等检测技术的数据融合策略及其在食用油真实性鉴别中的研究及应用现状进行综述,指出:目前,广泛应用于食用油真实性鉴别的检测技术包括光谱、色谱、质谱、电子传感器等。然而,单一检测技术往往只关注某一特定的数据或指标,当食用油所含成分较复杂时,无法充分消除叠加效应、基线漂移、噪声等问题。数据融合策略分为数据层融合、特征层融合和决策层融合三类,结合化学计量学方法可以综合不同检测技术获取的数据,提取更丰富的数据特征信息,从而提高食用油真实性的鉴别效果。不同的新型检测技术之间,或将其与传统光谱、质谱、色谱等检测技术之间进行数据融合,可以快速、准确地实现食用油掺伪鉴别、品种分类和产地溯源,未来可就改进现有分析方法、结合深度学习算法开发新型融合算法、引入云计算提高食用油鉴别实时性等方面进行深入研究,以推动数据融合策略在食用油真实性鉴别领域的发展与创新。
    1. [1]

      ZHANG T,LIU Y Y,DAI Z P,et al.Quantitative detection of extra virgin olive oil adulteration,as opposed to peanut and soybean oil,employing LED-induced fluorescence spectroscopy[J].Sensors,2022,22(3):1227.

    2. [2]

      孔令琦,宋佳琪,陈林林,等.食用油掺伪鉴别技术及模型建立的研究进展[J].食品安全质量检测学报,2022,13(19):6132-6139.

    3. [3]

      SALAH W A,NOFAL M.Review of some adulteration detection techniques of edible oils[J].Journal of the Science of Food and Agriculture,2021,101(3):811-819.

    4. [4]

      程慧,刘顺,关洪宣.两种滴定法测定食用油中过氧化值和酸价的不确定度评价[J].食品与机械,2022,38(1):73-77
      ,99.

    5. [5]

      邓焯文,陈喆,付家顺,等.数据融合策略在食品产地溯源中的应用进展[J].分析化学,2023,51(1):11-21.

    6. [6]

      李艳坤,许东情.基于中红外光谱模型对食用植物油掺伪的判别[J].河北大学学报(自然科学版),2022,42(6):605-610.

    7. [7]

      王九玲,罗文,李文凯.反向传播神经网络算法结合拉曼荧光光谱法定量检测特级初榨橄榄油掺假[J].食品安全质量检测学报,2023,14(22):126-133.

    8. [8]

      戴嘉伟,王海朋,陈瀑,等.多光谱数据融合分析技术的研究和应用进展[J].分析化学,2022,50(6):839-849.

    9. [9]

      杨巧玲,邓晓军,孙晓东,等.光谱数据融合技术在食品检测中的应用研究进展[J].食品工业科技,2020,41(18):324-329.

    10. [10]

      孙婷婷,钟瑾璟,刘剑波,等.茶油掺伪定性鉴别模型的对比分析[J].中国粮油学报,2022,37(11):245-252.

    11. [11]

      DU Q W,ZHU M T,SHI T,et al.Adulteration detection of corn oil,rapeseed oil and sunflower oil in camellia oil by in situ diffuse reflectance near-infrared spectroscopy and chemometrics[J].Food Control,2021,121:107577.

    12. [12]

      YUAN Z,ZHANG L X,WANG D,et al.Detection of flaxseed oil multiple adulteration by near-infrared spectroscopy and nonlinear one class partial least squares discriminant analysis[J].LWT-Food Science and Technology,2020,125:109247.

    13. [13]

      JAMWAL R,AMIT,KUMARI S,et al.Attenuated total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with chemometrics for rapid detection of argemone oil adulteration in mustard oil[J].LWT-Food Science and Technology, 2020,120:108945.

    14. [14]

      ARSLAN F N,AKIN G,KARUK ELMAS N,et al.Rapid detection of authenticity and adulteration of cold pressed black cumin seed oil:A comparative study of ATR-FTIR spectroscopy and synchronous fluorescence with multivariate data analysis[J].Food Control,2019,98:323-332.

    15. [15]

      ZHAO H F,ZHAN Y L,XU Z,et al.The application of machine-learning and Raman spectroscopy for the rapid detection of edible oils type and adulteration[J].Food Chemistry,2022,373:131471.

    16. [16]

      CASTRO R C,RIBEIRO D S M,SANTOS J L M,et al.Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants[J].Talanta,2021,230:122373.

    17. [17]

      ZHANG T,LIU Y Y,DAI Z P,et al.Quantitative detection of extra virgin olive oil adulteration,as opposed to peanut and soybean oil,employing LED-induced fluorescence spectroscopy[J].Sensors,2022,22(3):1227.

    18. [18]

      HUYAN Z Y,DING S X,LIU X L,et al.Authentication and adulteration detection of peanut oils of three flavor types using synchronous fluorescence spectroscopy[J].Analytical Methods,2018,10(26):3207-3214.

    19. [19]

      WANG S H,LAI G Y,LIN J Z,et al.Rapid detection of adulteration in extra virgin olive oil by low-field nuclear magnetic resonance combined with pattern recognition[J].Food Analytical Methods,2021,14(7):1322-1335.

    20. [20]

      WANG X R,HAN Y Z,LI Y X,et al.Detection of Qinghai-Tibet Plateau flaxseed oil adulteration based on fatty acid profiles and chemometrics[J].Food Control,2021,130:108332.

    21. [21]

      MANSUR A R,JEONG H R,LEE B H,et al.Comparative evaluation of triacylglycerols,fatty acids,and volatile organic compounds as markers for authenticating sesame oil[J].International Journal of Food Properties,2018,21(1):2509-2516.

    22. [22]

      侯颖烨,王志元,谢建军,等.元素分析-稳定同位素质谱法结合化学计量学鉴别橄榄油掺假[J].中国油脂,2023,48(6):73-78.

    23. [23]

      OZCAN-SINIR G.Detection of adulteration in extra virgin olive oil by selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics[J].Food Control,2020,118:107433.

    24. [24]

      CALVINI R,PIGANI L.Toward the development of combined artificial sensing systems for food quality evaluation:A review on the application of data fusion of electronic noses,electronic tongues and electronic eyes[J].Sensors,2022,22(2):577.

    25. [25]

      MIRHOSEINI-MOGHADDAM S M,YAMAGHANI M R,BAKHSHIPOUR A.Application of electronic nose and eye systems for detection of adulteration in olive oil based on chemometrics and optimization approaches[J].Journal of Universal Computer Science,2023,29(4):300-325.

    26. [26]

      CLEMENTE O,ROCÍO R,L. D G,et al.Comparing the potential of IR-spectroscopic techniques to gas chromatography coupled to ion mobility spectrometry for classifying virgin olive oil categories[J].Food Chemistry(X),2023,19:100738.

    27. [27]

      SHEU S C,WANG Y J,HUANG P C,et al.Authentication of olive oil in commercial products using specific,sensitive,and rapid loop-mediated isothermal amplification[J].Journal of Food Science and Technology,2023,60(6):1834-1840.

    28. [28]

      AZCARATE S M,RÍOS-REINA R,AMIGO J M,et al.Data handling in data fusion: Methodologies and applications[J].TrAC Trends in Analytical Chemistry,2021,143:116355.

    29. [29]

      SUN Z B,DAVIS J,GAO W.Estimating error covariance and correlation region in UV irradiance data fusion by combining TOMS-OMI and UVMRP ground observations[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(1):355-370.

    30. [30]

      MOROS J,JAVIER LASERNA J.Unveiling the identity of distant targets through advanced Raman-laser-induced breakdown spectroscopy data fusion strategies[J].Talanta,2015,134:627-639.

    31. [31]

      徐伟杰,武中臣,朱香平,等.基于光谱融合的火星表面相关矿物分类方法研究[J].光谱学与光谱分析,2018,38(6):1926.

    32. [32]

      王清亚,李福生,江晓宇,等.基于XRF和Vis-NIR光谱数据融合的土壤镉含量定量分析法[J].分析测试学报,2020,39(11):1327-1333.

    33. [33]

      CHANDRA S,CHAPMAN J,POWER A,et al.Origin and regionality of wines: The role of molecular spectroscopy[J].Food Analytical Methods,2017,10(12):3947-3955.

    34. [34]

      李艳坤,董汝南,张进,等.光谱数据解析中的变量筛选方法[J].光谱学与光谱分析,2021,41(11):3331-3338.

    35. [35]

      PEARSON K.On lines and planes of closest fit to systems of points in space[J].Philosophical Magazine,1901,2(11):559-572.

    36. [36]

      CENTNER V,MASSART D L,DE NOORD O E,et al.Elimination of uninformative variables for multivariate calibration[J].Analytical Chemistry,1996,68(21):3851-3858.

    37. [37]

      NØRGAARD L,SAUDLAND A,WAGNER J,et al.Interval partial least-squares regression (iPLS):A comparative chemometric study with an example from near-infrared spectroscopy[J].Applied Spectroscopy,2000,54(3):413-419.

    38. [38]

      LI H D,LIANG Y Z,XU Q S,et al.Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J].Analytica Chimica Acta,2009,648(1):77-84.

    39. [39]

      ARAÚJO M C U,SALDANHA T C B,GALVÃO R K H,et al.The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J].Chemometrics and Intelligent Laboratory Systems,2001,57(2):65-73.

    40. [40]

      METROPOLIS N,ROSENBLUTH A W,ROSENBLUTH M N,et al.Equation of state calculations by fast computing machines[J].The Journal of Chemical Physics,1953,21(6):1087-1092.

    41. [41]

      JIN Z,YANG J Y,HU Z S,et al.Face recognition based on the uncorrelated discriminant transformation[J].Pattern Recognition,2001,34(7):1405-1416.

    42. [42]

      GENG X J,LIANG Y, JIAO L M.Multi-frame decision fusion based on evidential association rule mining for target identification[J].Applied Soft Computing,2020,94:106460.

    43. [43]

      DANKOWSKA A.Data fusion of fluorescence and UV spectroscopies improves the detection of cocoa butter adulteration[J].European Journal of Lipid Science and Technology,2017,119(8):1156-1172.

    44. [44]

      LI Y,XIONG Y M,MIN S G.Data fusion strategy in quantitative analysis of spectroscopy relevant to olive oil adulteration[J].Vibrational Spectroscopy,2019,101:20-27.

    45. [45]

      SCHWOLOW S,GERHARDT N,ROHN S,et al.Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys-is it worth to go the extra Mile?[J].Analytical and Bioanalytical Chemistry,2019,411(23):6005-6019.

    46. [46]

      BURATTI S,MALEGORI C,BENEDETTI S,et al.E-nose,e-tongue and e-eye for edible olive oil characterization and shelf life assessment:A powerful data fusion approach[J].Talanta,2018,182:131-141.

    47. [47]

      TATA A,MASSARO A,DAMIANI T,et al.Detection of soft-refined oils in extra virgin olive oil using data fusion approaches for LC-MS,GC-IMS and FGC-Enose techniques:The winning synergy of GC-IMS and FGC-Enose[J].Food Control,2022,133:108645.

    48. [48]

      张婧,单慧勇,杨仁杰,等.基于近-中红外相关谱融合判定掺伪芝麻油[J].光子学报,2019,48(6):62-68.

    49. [49]

      HU O,CHEN J,GAO P F,et al.Fusion of near-infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods[J].Journal of the Science of Food and Agriculture,2019,99(5):2285-2291.

    50. [50]

      GU H Y,HUANG X Y,SUN Y H,et al.Intelligent evaluation of total polar compounds (TPC) content of frying oil based on fluorescence spectroscopy and low-field NMR[J].Food Chemistry,2021,342:128242.

    51. [51]

      LIU H,CHEN Y,SHI C,et al.FT-IR and Raman spectroscopy data fusion with chemometrics for simultaneous determination of chemical quality indices of edible oils during thermal oxidation[J].LWT-Food Science and Technology,2020,119:108906.

    52. [52]

      邱薇纶,周燕舞,石孟良.基于数据融合策略植物油光谱模式的识别[J].中国油脂,2023,48(7):62-66
      ,89.

    53. [53]

      OBISESAN K A,JIMÉNEZ-CARVELO A M,CUADROS-RODRIGUEZ L,et al.HPLC-UV and HPLC-CAD chromatographic data fusion for the authentication of the geographical origin of palm oil[J].Talanta,2017,170:413-418.

    54. [54]

      VERA D N,JIMÉNEZ-CARVELO A M,CUADROS-RODRÍGUEZ L,et al.Authentication of the geographical origin of extra-virgin olive oil of the Arbequina cultivar by chromatographic fingerprinting and chemometrics[J].Talanta,2019,203:194-202.

    55. [55]

      SRINATH K,KIRANMAYEE A H,BHANOT S,et al.Detection of palm oil adulteration in sunflower oil using ATR-MIR spectroscopy coupled with chemometric algorithms[J].MAPAN,2022,37(3):483-493.

    56. [56]

      UNCU O,OZEN B. A comparative study of mid-infrared, UV-visible and fluorescence spectroscopy in combination with chemometrics for the detection of adulteration of fresh olive oils with old olive oils[J].Food Control,2019,105:209-218.

    57. [57]

      ARSLAN F N,AKIN G,KARUK ELMAS N,et al.Rapid detection of authenticity and adulteration of cold pressed black cumin seed oil:A comparative study of ATR-FTIR spectroscopy and synchronous fluorescence with multivariate data analysis[J].Food Control,2019,98:323-332.

    58. [58]

      FORT A,RUISÁNCHEZ I,CALLAO M P.Chemometric strategies for authenticating extra virgin olive oils from two geographically adjacent Catalan protected designations of origin[J].Microchemical Journal,2021,169:106611.

    59. [59]

      高冰,吴鹏飞,许晓栋,等.基于色谱和光谱数据融合的不同植物源食用油判别方法与模型[J].分析测试学报,2020,39(11):1398-1403.

    60. [60]

      MALÉCHAUX A,LAROUSSI-MEZGHANI S,LE DRÉAU Y,et al.Multiblock chemometrics for the discrimination of three extra virgin olive oil varieties[J].Food Chemistry,2020,309:125588.

    61. [61]

      JURADO-CAMPOS N,ARROYO-MANZANARES N,VIÑAS P,et al.Quality authentication of virgin olive oils using orthogonal techniques and chemometrics based on individual and high-level data fusion information[J].Talanta,2020,219:121260.

    62. [62]

      ZAREZADEH M R,ABOONAJMI M,GHASEMI-VARNAMKHASTI M.The effect of data fusion on improving the accuracy of olive oil quality measurement[J].Food Chemistry(X),2023,18:100622.

    63. [63]

      BLANDON-NARANJO L,ALANIZ R D,ZON M A,et al.Development of a voltammetric electronic tongue for the simultaneous determination of synthetic antioxidants in edible olive oils[J].Talanta,2023,261:124123.

    64. [64]

      ZHOU X,LI X Q,ZHAO B,et al.Discriminant analysis of vegetable oils by thermogravimetric-gas chromatography/mass spectrometry combined with data fusion and chemometrics without sample pretreatment[J].LWT-Food Science and Technology,2022,161:113403.

    1. [1]

      吴晓东刘畅李俊胡良志贺凌晨袁海霞李强黄锦标 . 基于高光谱检测的烟丝加香均匀性表征方法. 轻工学报, 2024, 39(5): 95-101. doi: 10.12187/2024.05.011

    2. [2]

      卢晓波徐海朱俊召张宇谭健高冠男胡军华林龙 . 基于机器视觉的加热卷烟烟支端部质量检测系统设计. 轻工学报, 2024, 0(0): -.

    3. [3]

      刘广超邓莎高峄涵吴涛邓锐杰 . 加热卷烟辊压法薄片丝吸湿性影响因素研究. 轻工学报, 2024, 39(5): 109-117. doi: 10.12187/2024.05.013

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  589
  • 引证文献数: 0
文章相关
  • 收稿日期:  2023-11-15
  • 修回日期:  2024-01-18
  • 刊出日期:  2024-10-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
李艳坤, 张伟, 刘彦伶. 数据融合策略在食用油真实性鉴别中的研究与应用进展[J]. 轻工学报, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006
引用本文: 李艳坤, 张伟, 刘彦伶. 数据融合策略在食用油真实性鉴别中的研究与应用进展[J]. 轻工学报, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006
LI Yankun, ZHANG Wei and LIU Yanling. Research and application progress of data fusion strategy in authenticity identification of edible oil[J]. Journal of Light Industry, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006
Citation: LI Yankun, ZHANG Wei and LIU Yanling. Research and application progress of data fusion strategy in authenticity identification of edible oil[J]. Journal of Light Industry, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006

数据融合策略在食用油真实性鉴别中的研究与应用进展

    作者简介:李艳坤(1977—),女,河北省邯郸市人,华北电力大学副教授,博士,主要研究方向为化学计量学、环境分析化学。E-mail:liyankun_ncepu@foxmail.com
  • 1. 华北电力大学 环境科学与工程系, 河北 保定 071003;
  • 2. 华北电力大学 河北省燃煤电站烟气多污染物协同控制重点实验室, 河北 保定 071003
基金项目:  国创计划资助项目(S202310079127)中央高校基本科研业务费项目(2017MS135)

摘要: 对基于光谱、质谱、色谱等检测技术的数据融合策略及其在食用油真实性鉴别中的研究及应用现状进行综述,指出:目前,广泛应用于食用油真实性鉴别的检测技术包括光谱、色谱、质谱、电子传感器等。然而,单一检测技术往往只关注某一特定的数据或指标,当食用油所含成分较复杂时,无法充分消除叠加效应、基线漂移、噪声等问题。数据融合策略分为数据层融合、特征层融合和决策层融合三类,结合化学计量学方法可以综合不同检测技术获取的数据,提取更丰富的数据特征信息,从而提高食用油真实性的鉴别效果。不同的新型检测技术之间,或将其与传统光谱、质谱、色谱等检测技术之间进行数据融合,可以快速、准确地实现食用油掺伪鉴别、品种分类和产地溯源,未来可就改进现有分析方法、结合深度学习算法开发新型融合算法、引入云计算提高食用油鉴别实时性等方面进行深入研究,以推动数据融合策略在食用油真实性鉴别领域的发展与创新。

English Abstract

参考文献 (64) 相关文章 (3)

目录

/

返回文章