分数阶单摆多混沌系统的降阶同步
Reduced-order synchronization of fractional-order simple pendulum multi-chaotic system
-
摘要: 通过对建立的单摆微分系统进行降阶处理,获得了单摆多混沌系统降阶同步的充分条件,研究表明,在合适的控制器下分数阶单摆多混沌系统是降阶同步的,数值仿真结果进一步验证了该降阶方法的有效性.Abstract: By reducing the order of the established simple pendulum differential system, the sufficient conditions for the reduced-order synchronization of the single pendulum multi-chaotic system were obtained.The study proved that the fractional-order single pendulum multi-chaotic system was reduced-order synchronization under the appropriate controller.The value simulation results further verified the validity of this reduced-order method.
-
-
[1]
宋晓娜,宋帅,满景涛.不确定分数阶Genesio混沌系统的反演滑模同步[J].山东科技大学学报(自然科学版),2019,38(5):66.
-
[2]
毛北行.纠缠混沌系统的比例积分滑模同步[J].山东大学学报(工学版),2018,48(4):50.
-
[3]
SONG X N,SONG S,MAN J T. Backstepping sliding mode synchronization of uncertain fractional-order Genesio chaotic system[J].Journal of Shandong University of Science and Technology(Natural Science), 2019,38(5):66.
-
[4]
毛北行,周长芹.分数阶不确定Duffling混沌系统的终端滑模同步[J].东北师范大学学报(自然科学版),2018,50(2):47.
-
[5]
王东晓.分数阶超混沌Bao系统的比例积分滑模同步[J].内蒙古农业大学学报(自然科学版),2018,39(3):83.
-
[6]
毛北行,孟晓玲.具有死区输入的分数阶多涡卷混沌系统的有限时间同步[J].浙江大学学报(理学版),2017,44(3):302.
-
[7]
SARA H,HEYDAR T S.Design of nonlinear conformable fractional-order sliding mode controller for a class of nonlinear systems[J].Journal of Control,Automation and Electrical Systems,2019,35(3):313.
-
[8]
SONG S, ZHANG B Y, SONG X N, et al.Fractional-order adaptive neuro-fuzzy sliding mode H∞ control for fuzzy singularly perturbed systems[J].Journal of Franklin Institute,2019,356(10):5027.
-
[9]
毛北行.分数阶Newton-Leipnik混沌系统滑模同步的两种方法[J].吉林大学学报(理学版),2018,56(3):708.
-
[10]
MAO B X.Four methods for sliding mode synchronization of fractional-order new hyperchaotic system[J].Paper Asia,2018,13(5):118.
-
[11]
MEI J, JIANG M H, WANG J. Finite-time structure identification and synchronization of drive-response systems with uncertain parameter[J]. Commun Nonlinear Sci Numer Simulat,2013(18):999.
-
[12]
毛北行,李巧利.一类分数阶Duffling-Van der pol系统的混沌同步[J].吉林大学学报(理学版),2016,54(2):369.
-
[13]
YU J Y, LEI J W.Synchronization of chaotic system with adaptive transfer function sliding mode method[J].Optic,2017,132:209.
-
[14]
LU J G. Chaotic dynamics and cynchronization of fractional-order Genesio-Tesi systems[J].Chinese Physics,2005,14(8):1517.
-
[15]
毛北行,李巧利.一类分数阶Genesio-Tesi系统的滑模混沌同步[J].中山大学学报(自然科学版),2017,56(2):76.
-
[16]
郎和.保守单摆系统中的混沌运动[J].西北师范大学学报(自然科学版),2002,38(4):108.
-
[17]
郎和.保守单摆系统中的复杂结构[J].西北师范大学学报(自然科学版),2003,39(2):33.
-
[18]
贺尚宏,谢进,程杰锋,等.非线性单摆动力系统多参数混沌边缘的研究[J].机械传动,2015,39(8):1.
-
[19]
程春蕊,朱军辉,毛北行.分数阶单摆系统的终端滑模混沌同步[J].工程数学学报,2019,36(1):99.
-
[20]
胡建兵,赵灵冬.分数阶系统稳定性理论与控制研究[J].物理学报,2013,62(24):5041.
-
[1]
计量
- PDF下载量: 5
- 文章访问数: 1826
- 引证文献数: 0