电催化还原CO2反应体系研究进展
Research progress of reaction system for electrochemical CO2 reduction
-
摘要: 针对电化学还原CO2反应(CO2ER)过电位较高、转化效率较低、产物选择性较差等问题,对CO2ER催化剂、电解液和电解池的最新研究进展进行综述,指出:现阶段开发的CO2ER催化剂主要包括金属纳米粒子、金属合金、金属氧化物、金属硫化物和金属单原子催化剂,可通过调变催化剂的形貌结构和颗粒尺寸、掺杂元素、引入结构缺陷等方式来提高催化剂的活性、选择性和稳定性;CO2ER体系的电解液主要包括水系电解液、离子液体电解液和有机溶剂电解液,目前应用比较广泛的是水系电解液,但其析氢副反应的发生会使产物选择性受到抑制,而离子液体电解液和有机溶剂电解液中CO2溶解度较大且可抑制析氢副反应的发生,这也是未来的主要应用研究方向;CO2ER用电解池主要包括H型电解池、连续式流动池和MEA反应器,其中MEA反应器是实现CO2电催化转化规模化应用的重要技术手段之一。未来需深入研究催化反应机理,探究其反应活性位点,实现反应催化性能和稳定性的精准调控,同时开发新型电解液和改进电解池设计,以进一步优化反应性能。Abstract: Against issues of the high overpotential, low conversion efficiency, and poor product selectivity of electrochemical CO2 reduction (CO2ER), the research progress of electrocatalysts, electrolytes, and electrolytic cells were reviewed. It was found that the currently developed electrocatalysts contained metal nanoparticles, metal alloy, metal oxides, metal sulfide and single metal atoms. Their catalytic activity, selectivity and stability could be enhanced by adjusting the structure and particle size of electrocatalysts, doping additional elements or introducing structural defects. The electrolyte of CO2ER included aqueous electrolyte, ionic liquid electrolyte and organic electrolyte. At present, the aqueous electrolyte was widely applied, but its selectivity was inhibited by the side hydrogen evolution reaction. The ionic liquid electrolyte and organic electrolyte has high solubility of CO2 and could restrain the hydrogen evolution reaction, which was considered as the main application research direction in the future. The CO2ER can be conducted in H-type cell, continuous flow cell and MEA reactors, among which MEA is one of the important technology to realize the scale application of electrochemical CO2 conversion. In the future, the reaction mechanism should be further studied, and the active sites should be probed to realize the precise control of catalytic performance and stability. Meanwhile, the novel electrolytes should be developed and the design of electrolytic cell should be modified in order to further improve the catalytic performance.
-
Key words:
- carbon dioxide /
- electrochemical reduction /
- electrolyte /
- electrolytic cell /
-
-
[1]
SCHNEIDER J,JIA H F,MUCKERMAN J T,et al.Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts[J].Chemical Society Reviews,2012,41(6):2036-2051.
-
[2]
LOW J X,DAI B Z,TONG C J,et al.In situ irradiated X-Ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J].Advanced Materials,2019,31(6):1802981.
-
[3]
ZHANG S H,SHI J F,SUN Y,et al.Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide[J].ACS Catalysis,2019,9(5):3913-3925.
-
[4]
ZHANG X B,HAN S B,ZHU B E,et al. Reversible loss of core-shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation[J].Nature Catalysis,2020,3(4):411-417.
-
[5]
刘卫涛,张桂伟,平丹,等.聚苯胺基ZnFe-N-C的制备及其电还原CO2催化性能研究[J].轻工学报,2020,35(1):55-62.
-
[6]
APPEL A M,BERCAW J E,BOCATSLY A B,et al.Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J].Chemical Reviews, 2013,113(8):6621-6658.
-
[7]
PAN Y N,PASCHOALINO W J,BAYRAM S S,et al.Biosynthesized silver nanorings as a highly efficient and selective electrocatalysts for CO2 reduction[J].Nanoscale,2019,11(40):18595-18603.
-
[8]
KWOK K S,WANG Y X,CAO M C,et al.Nano-folded gold catalysts for electroreduction of carbon dioxide[J].Nano Letters,2019,19(12):9154-9159.
-
[9]
FENG Y,CHENG C Q,ZOU C Q,et al.Electroreduction of carbon dioxide in metallic nanopores through a pincer mechanism[J].Angewandte Chemie International Edition,2020,59(43):19459-19465.
-
[10]
LYU W X,ZHOU J,BEI J J,et al.Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate[J].Applied Surface Science, 2017,393:191-196.
-
[11]
CAO C,MA D D,GU J F,et al.Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J].Angewandte Chemie International Edition,2020,59(35):15014-15020.
-
[12]
ZHANG B X,ZHANG J L,HUA M L,et al.Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets[J].Journal of the American Chemical Society,2020,142(31):13603-13613.
-
[13]
JIAO J Q,LIN R,LIU S J,et al.Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2[J].Nature Chemistry,2019,11(3):222-228.
-
[14]
ZHANG W,HUANG C Q,XIAO Q,et al.A typical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction[J].Journal of the American Chemical Society,2020,142(26):11417-11427.
-
[15]
WANG Y X,SHEN H,KEN L,et al.Copper nanocubes for CO2 reduction in gas diffusion electrodes[J].Nano Letters,2019,19(12):8461-8648.
-
[16]
MARTIC N,RELLER C,MACACAULEY C,et al.Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction[J].Advanced Energy Materials,2019,9(29):1901228.
-
[17]
ZHENG X L,JI Y F,TANG J,et al.Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials[J].Nature Catalysis,2018,2(1):55-61.
-
[18]
REN D,GAO J,PAN L F,et al.Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J].Angewandte Chemie International Edition,2019,58(42):15036-15040.
-
[19]
WANG X,WANG Z Y,ARQUER F,et al.Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J].Nature Energy,2020,5(6):478-486.
-
[20]
MANTHIRAM K,BEBEERWYCK B J,ALIVISATOS A P.Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst[J]. Journal of the American Chemical Society,2014,136(38):13319-13325.
-
[21]
IYEBFAR P,HUANG J F,GREGORIO G L,et al.Size dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO2 to CH4[J].Chemical Communications,2019,55(60):8796-8799.
-
[22]
LI Y F,CUI F,ROSS M B,et al.Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires[J].Nano Letters,2017,17(2):1312-1317.
-
[23]
张钰宁,钮东方,胡硕真,等.基于纳米金属的增强效应在CO2电还原反应中的应用进展[J].电化学,2020,26(4):495-509.
-
[24]
CHANG C J,LIN S C,CHEN H C,et al.Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane[J].Journal of the American Chemical Society,2020,142(28):12119-12132.
-
[25]
KIM D,XIE C L,BECKNELL N,et al.Electrochemical activation of CO2through atomic ordering transformations of AuCu nanoparticles[J].Journal of the American Chemical Society,2017,139(24):8329-8336.
-
[26]
SARAH L,DAVID M,JULIETTE B,et al.High-current-density CO2-to-CO electroreduction on Ag-alloyed Zn dendrites at elevated pressure[J].Joule,2020,4(2):395-406.
-
[27]
ZHUANG G,CHEN Y,ZHUANG Z,et al.Oxygen vacancies in metal oxides: Recent progress towards advanced catalyst design[J].Science China Materials,2020,63(11):2089-2118.
-
[28]
CHEN Y,KANAN M W.Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts[J].Journal of the American Chemical Society,2012,134(4):1986-1989.
-
[29]
KANAN M W,LI C W.CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J].Journal of the American Chemical Society,2012,134(17):7231-7234.
-
[30]
QIN R X,LIU P X,FU G,et al.Strategies for stabilizing atomically dispersed metal catalysts[J].Small Methods,2018,2(1):1700286.
-
[31]
HAN Z,HU Q,CHENG Z,et al.High-performance overall CO2 splitting on hierarchical structured cobalt disulfide with partially removed sulfur edges[J].Advanced Functional Materials,2020,30(25):2000154.
-
[32]
ZHUANG T T,LIANG Z Q,SEIFITOKALDANI A,et al.Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J].Nature Catalysis,2018,1(6):421-428.
-
[33]
QIAO B T,WANG A Q,YANG X F,et al.Single-atom catalysis of CO oxidation using Pt1/FeO<i>x[J].Nature Chemistry,2011,3(8):634-641.
-
[34]
JU W,BAGGER A,HAO G P,et al.Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J].Nature Communications,2017,8(1):944-952.
-
[35]
PAN Y,SUN K A,LIU S J,et al.Core-shell ZIF-8@ZIF-67 derived CoP nanoparticles-embedded N-doped carbon nanotube hollow polyhedron for efficient over-all water splitting[J].Journal of the American Chemical Society,2018,140(7):2610-2618.
-
[36]
朱红林,李文英,黎挺挺,等.CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J].化学进展,2019,31(7):939-953.
-
[37]
XU C C,ZHI X,WANG D,et al.Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts[J].Small Structures,2020,2(1):2000058.
-
[38]
ZHENG W Z,CHEN F, ZENG Q,et al.A universal principle to accurately synthesize atomically dispersed metal-N-4 sites for CO2electroreduction[J].Nano-Micro Letters,2020,12:108.
-
[39]
JIN S,NI Y X,HAO Z M,et al.A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts[J].Angewandte Chemie International Edition,2020,59(49):2885-21889.
-
[40]
LI X G,XI S B,SUN L B,et al.Isolated FeN4 sites for efficient electrocatalytic CO2 reduction[J].Advanced Science,2020,7(17):2001545.
-
[41]
JIAO L,YANG W J,WAN G,et al.Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures[J].Angewandte Chemie International Edition,2020,59(46):20589-20595.
-
[42]
FAN Q,HOU P F,CHIO C,et al.Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2[J].Advanced Energy Materials,2020,10(5):1903068.
-
[43]
FENG J Q,GAO H S,ZHENG L R,et al.A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction[J].Nature Communications,2020,11(1):4341.
-
[44]
GONG Y A,JIAO L,QIAN Y Y,et al.Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction[J].Angewandte Chemie-International Edition,2020,132(7):2727-2731.
-
[45]
LI Z D,HE D,YAN X,et al.Size-dependent nickel-based electrocatalysts for selective CO2 reduction[J]. Angewandte Chemie-International Edition,2020,132(42):18731-18736.
-
[46]
SHANG H S,WANG T,PEI J J,et al.Design of a single-atom indium (delta+)-N4 interface for efficient electroreduction of CO2 to formate[J].Angewandte Chemie International Edition,2020,59(50):22465-22469.
-
[47]
JIANG Z L,WANG T,PEI J J,et al.Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency[J].Energy & Environmental Science,2020,13(9):2856-2863.
-
[48]
WU S D,LYU X N,PIN D,et al.Highly exposed atomic Fe-N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO[J].Electrochimica Acta,2020,340:135930.
-
[49]
LU P L,YANG Y J,YAO J N,et al.Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction[J].Applied Catalysis B-Environmental,2019,241:113-119.
-
[50]
GU J,HSU C S,BAI L C,et al.Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J].Science,2019,364(6445):1091-1094.
-
[51]
WANG X Q,CHEN Z,ZHAO X Y,et al.Regulation of coordination number over single Co sites:Triggering the efficient electroreduction of CO2[J].Angewandte Chemie International Edition,2018,130(7):1962-1966.
-
[52]
彭奎霖,李桂林,江重阳,等.电解液调控CO2电催化还原性能微观机制的研究进展[J].高等学校化学学报,2022,43(7):20220238.
-
[53]
HUANG Y J,CUI G K,ZHAO Y L,et al.Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids[J].Chemical Communications,2019,56(43):13293-13297.
-
[54]
BJORN B,PRABUDDHA M,JOHN L H,et al.Vibrational sum-frequency generation study of the CO2 electrochemical reduction at Pt/EMIM-BF4 solid/liquid interfaces[J].Journal of Electroanalytical Chemistry,2017,800:144-150.
-
[55]
CHU D B,QIN G X,YUAN X M,et al.Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution[J].ChemSusChem,2008,1(3):205-209.
-
[56]
ASADI M,KUMAR B,BEHRANGINIA A,et al.Robust carbon dioxide reduction on molybdenum disulphide edges[J].Nature Communications,2014,5:4470.
-
[57]
KANECO S,IIBA K,KATSUMATA H,et al.Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol[J].Journal of Solid State Electrochemistry,2007,11(4):490-495.
-
[58]
SUN Z,MA T,TAO H,et al.Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J].Chem,2017,3(4):560-587.
-
[59]
范佳,韩娜,李彦光.基于流动池的电化学二氧化碳还原研究进展[J].电化学,2020,26(4):510520.
-
[60]
CHEM Z,ZHANG X,LIU W,et al.Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level[J].Energy & Environmental Science,2021,14:2349-2356.
-
[61]
XU Y,EDWARDS J P,LIU S,et al.Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability[J].ACS Energy Letters,2021,6(2):809-815.
-
[62]
ZHENG T T,JIANG K,TA N,et al.Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J].Joule,2019,3(1):265-278.
-
[1]
计量
- PDF下载量: 29
- 文章访问数: 3481
- 引证文献数: 0