JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

即食豆干加工过程中的细菌污染溯源

杜秋 唐辉 孙军华 谭益升 吴梓仟 蒋立文 刘洋

杜秋, 唐辉, 孙军华, 等. 即食豆干加工过程中的细菌污染溯源[J]. 轻工学报, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004
引用本文: 杜秋, 唐辉, 孙军华, 等. 即食豆干加工过程中的细菌污染溯源[J]. 轻工学报, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004
DU Qiu, TANG Hui, SUN Junhua, et al. Traceability of bacterial contamination during the processing of ready-to-eat dried soybean curd[J]. Journal of Light Industry, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004
Citation: DU Qiu, TANG Hui, SUN Junhua, et al. Traceability of bacterial contamination during the processing of ready-to-eat dried soybean curd[J]. Journal of Light Industry, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004

即食豆干加工过程中的细菌污染溯源

    作者简介: 杜秋(1997-),女,云南省昆明市人,湖南农业大学硕士研究生,主要研究方向为食品生物技术。E-mail:1299100818@qq.com;
  • 基金项目: 国家重点研发计划项目(2019YFC1606200)

  • 中图分类号: TS207.4

Traceability of bacterial contamination during the processing of ready-to-eat dried soybean curd

  • Received Date: 2023-11-06
    Accepted Date: 2024-01-29

    CLC number: TS207.4

  • 摘要: 采用传统微生物培养法结合高通量测序技术分析即食豆干生产过程中微生物数量及细菌群落组成变化,确定主要污染环节及微生物组成情况,并通过16S rDNA鉴定腐败菌。结果表明:即食豆干加工过程中的主要污染环节是原料湖北黄豆,菌落总数高达(3.2±0.1)×106 CFU/g;溶烂、拉丝腐败样品(D18、D19)的菌落总数分别高达(4.4±0.4)×106 CFU/g和(2.6±0.2)×106 CFU/g,且优势菌均为芽孢杆菌属;加工过程中,D20(2次烘烤摊凉后的半成品)、D9(1次卤制前的半成品)、D21(1次卤制后的半成品)和D23(3次卤制的混合膏体)均检测到相对丰度较高的芽孢杆菌属,其相对丰度分别为95.67 %、70.64 %、55.24 %和91.26 %;D18、D19与烘烤前加工单元(D1、D3、D4)和卤制加工单元(D5、D24、D23)的细菌属组成相似,即腐败菌主要来源于D1、D3、D4、D5、D24和D23;导致即食豆干腐败样品D18、D19的细菌分别为甲基营养型芽孢杆菌(Bacillus methylotrophicus)和特基拉芽孢杆菌(B.tequilensis)。
    1. [1]

      WU T,HUANG Z R,ZHAO L Z,et al.Effects of the marinating process on the quality characteristics and bacterial community of leisure dried Tofu[J].Foods,2023,12(4):841.

    2. [2]

      曲敏,陈红丽,王宇,等.传统豆制品腐败菌污染及抑制研究进展[J].食品科学技术学报,2022,40(3):167-178.

    3. [3]

      毛佳怡,秦礼康,曾海英,等.传统卤豆干工艺优化及其对风味物质的影响[J].食品工业科技,2019,40(23):137-142
      ,150.

    4. [4]

      EOM J S,SEO B Y,CHOI H S.Biogenic amine degradation by Bacillus species isolated from traditional fermented soybean food and detection of decarboxylase-related genes[J].Journal of Microbiology and Biotechnology,2015,25(9):1519-1527.

    5. [5]

      郑丽君,申光辉,张志清,等.真空包装免泡豆杆优势腐败细菌分离鉴定及其致腐能力分析[J].食品科学, 2018,39(2):177-184.

    6. [6]

      张天宇,吕风至,桂萌,等.细菌芽孢萌发分子机制研究进展[J].食品科学,2023,44(23):240-251.

    7. [7]

      MARMION M,FERONE M T,WHYTE P,et al.The changing microbiome of poultry meat; from farm to fridge[J].Food Microbiology,2021,99:103823.

    8. [8]

      韩翠萍,葛子榜,刘庆冠,等.豆腐中主要腐败菌的分离鉴定及与品质的相关性分析[J].中国食品学报,2019,19(7):283-291.

    9. [9]

      赵丽君,田雪,钟威,等.基于高通量测序技术分析预包装豆干生产过程中的真菌污染风险[J].食品工业科技,2021,42(9):207-213.

    10. [10]

      邹强,汪正熙,张琼,等.高通量测序与传统方法对豆制品腐败菌的研究[J].食品工业,2018,39(3):178-182.

    11. [11]

      李志波,刘特元,钱植龙,等.灭菌豆干货架期内品质变化及微生物群落多样性分析[J].中国酿造,2017,36(7):124-128.

    12. [12]

      彭玲慧,吴菲菲,李化强,等.休闲卤豆干中腐败菌的分离鉴定[J].安徽农业科学,2015(32):154-156.

    13. [13]

      中华人民共和国国家卫生健康委员会.食品安全国家标准食品微生物学检验菌落总数测定:GB 4789.2-2022[S].北京:中国标准出版社,2022.

    14. [14]

      LOGUE J B,STEDMON C A,KELLERMAN A M et al.Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter[J]. ISME Journal,2016,10(3):533-545.

    15. [15]

      夏硕,郑丽君,申光辉,等.高温杀菌对预浸泡豆杆的杀菌效果及品质影响[J].基因组学与应用生物学,2019,38(5):2086-2093.

    16. [16]

      刘丽莎,彭义交,鲍鲁生,等.大豆浸泡过程中腐败微生物对豆浆品质的影响[J].食品科学,2015,36(14):161-164.

    17. [17]

      龚周亮,赵良忠,刘汁琪,等.巴氏杀菌后湘派豆干货架期内品质变化及微生态分析[J].中国食品工业,2023(7):104-107.

    1. [1]

      吴晓东刘畅李俊胡良志贺凌晨袁海霞李强黄锦标 . 基于高光谱检测的烟丝加香均匀性表征方法. 轻工学报, 2024, 39(5): 95-101. doi: 10.12187/2024.05.011

    2. [2]

      刘广超邓莎高峄涵吴涛邓锐杰 . 加热卷烟辊压法薄片丝吸湿性影响因素研究. 轻工学报, 2024, 39(5): 109-117. doi: 10.12187/2024.05.013

    3. [3]

      李艳坤张伟刘彦伶 . 数据融合策略在食用油真实性鉴别中的研究与应用进展. 轻工学报, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006

  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  2525
  • 引证文献数: 0
文章相关
  • 收稿日期:  2023-11-06
  • 修回日期:  2024-01-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
杜秋, 唐辉, 孙军华, 等. 即食豆干加工过程中的细菌污染溯源[J]. 轻工学报, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004
引用本文: 杜秋, 唐辉, 孙军华, 等. 即食豆干加工过程中的细菌污染溯源[J]. 轻工学报, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004
DU Qiu, TANG Hui, SUN Junhua, et al. Traceability of bacterial contamination during the processing of ready-to-eat dried soybean curd[J]. Journal of Light Industry, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004
Citation: DU Qiu, TANG Hui, SUN Junhua, et al. Traceability of bacterial contamination during the processing of ready-to-eat dried soybean curd[J]. Journal of Light Industry, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004

即食豆干加工过程中的细菌污染溯源

    作者简介:杜秋(1997-),女,云南省昆明市人,湖南农业大学硕士研究生,主要研究方向为食品生物技术。E-mail:1299100818@qq.com
  • 1. 湖南农业大学 食品科学技术学院, 湖南 长沙 410128;
  • 2. 广东省粤北食药资源利用与保护重点实验室, 广东 韶关 512005;
  • 3. 盐津铺子食品股份有限公司, 湖南 浏阳 410300
基金项目:  国家重点研发计划项目(2019YFC1606200)

摘要: 采用传统微生物培养法结合高通量测序技术分析即食豆干生产过程中微生物数量及细菌群落组成变化,确定主要污染环节及微生物组成情况,并通过16S rDNA鉴定腐败菌。结果表明:即食豆干加工过程中的主要污染环节是原料湖北黄豆,菌落总数高达(3.2±0.1)×106 CFU/g;溶烂、拉丝腐败样品(D18、D19)的菌落总数分别高达(4.4±0.4)×106 CFU/g和(2.6±0.2)×106 CFU/g,且优势菌均为芽孢杆菌属;加工过程中,D20(2次烘烤摊凉后的半成品)、D9(1次卤制前的半成品)、D21(1次卤制后的半成品)和D23(3次卤制的混合膏体)均检测到相对丰度较高的芽孢杆菌属,其相对丰度分别为95.67 %、70.64 %、55.24 %和91.26 %;D18、D19与烘烤前加工单元(D1、D3、D4)和卤制加工单元(D5、D24、D23)的细菌属组成相似,即腐败菌主要来源于D1、D3、D4、D5、D24和D23;导致即食豆干腐败样品D18、D19的细菌分别为甲基营养型芽孢杆菌(Bacillus methylotrophicus)和特基拉芽孢杆菌(B.tequilensis)。

English Abstract

参考文献 (17) 相关文章 (3)

目录

/

返回文章