JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

非热加工技术调控果蔬产品内源酶活性研究进展

李喜宏 杨梦娇 梁富浩 林子沁 李娇 吕芳娥 苗泽 姜瑜倩

李喜宏, 杨梦娇, 梁富浩, 等. 非热加工技术调控果蔬产品内源酶活性研究进展[J]. 轻工学报, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002
引用本文: 李喜宏, 杨梦娇, 梁富浩, 等. 非热加工技术调控果蔬产品内源酶活性研究进展[J]. 轻工学报, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002
LI Xihong, YANG Mengjiao, LIANG Fuhao, et al. Research progress on regulation of endogenous enzyme activities of fruit and vegetable products by non-thermal processing technology[J]. Journal of Light Industry, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002
Citation: LI Xihong, YANG Mengjiao, LIANG Fuhao, et al. Research progress on regulation of endogenous enzyme activities of fruit and vegetable products by non-thermal processing technology[J]. Journal of Light Industry, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002

非热加工技术调控果蔬产品内源酶活性研究进展

    作者简介: 李喜宏(1960-),男,辽宁省东港市人,天津科技大学教授,博士,主要研究方向为农产品保鲜与加工。E-mail:lixihong@tust.edu.cn;
  • 基金项目: 山东省重点研发计划项目(2021CXGC010809)

  • 中图分类号: TS205

Research progress on regulation of endogenous enzyme activities of fruit and vegetable products by non-thermal processing technology

  • Received Date: 2023-02-15
    Accepted Date: 2023-05-29

    CLC number: TS205

  • 摘要: 基于非热加工技术具有低温杀菌、能更好保持果蔬产品原有营养成分、色泽、新鲜度等优势,着重就5种常用非热加工技术对果蔬产品内源酶活性的调控效果和调控机制进行综述。认为,超高压、超声波、大气压冷等离子体、紫外线辐射和脉冲电场技术通过破坏内源酶的空间结构,可显著降低内源酶的活性。这些非热加工技术在调控果蔬产品内源酶活性时各具优势,不仅可提高果蔬产品的品质,同时也可为果蔬产品加工、贮藏等提供有效的手段和方案。果蔬产品内源酶的失活动力学模型主要包括一阶模型、双相模型、Weibull模型、Hülsheger's和Fermi's经验模型等,通过研究这些模型可更深入地了解非热加工技术调控果蔬产品内源酶活性的机制,进而优化果蔬产品的加工方案以保障产品的品质和安全。然而,非热加工技术的研究仍处于实验阶段,其调控果蔬产品内源酶活性的机制尚不完全明确,在实际生产中还存在设备成本高昂、安全隐患较明显等问题。未来应进一步改进和优化非热加工技术的工艺参数,深入探究非热加工技术对果蔬产品内源酶活性的调控机制,协同应用多种非热加工技术,尽量减少对果蔬产品品质的影响,以期为非热加工技术应用于果蔬深加工及产品工业化生产提供参考。
    1. [1]

      杨晓羽, 唐先谱, 郭艳利, 等.高二氧化碳处理对青柠檬保绿的效果[J].食品工业, 2019, 40(6):5-8.

    2. [2]

      MA L, ZHANG M, BHANDARI B, et al.Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables[J].Trends in Food Science & Technology, 2017, 64:23-38.

    3. [3]

      王志华, 贾朝爽, 谭焕光, 等.采收期结合1-MCP对苹果采后生理和贮藏品质的影响[J].农业工程学报, 2022, 38(20):293-300.

    4. [4]

      毛相朝, 李娇, 陈昭慧.非热加工技术对食品内源酶的控制研究进展[J].中国食品学报, 2021, 21(12):1-13.

    5. [5]

      闫凤娇.国内外食品非热加工技术发展状况[J].食品安全导刊, 2020(18):178.

    6. [6]

      BENITO-ROMÁN Ó, SANZ T M, MELGOSA R, et al.Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD)[J].The Journal of Supercritical Fluids, 2019, 147:310-321.

    7. [7]

      DARS A G, HU K, LIU Q D, et al.Effect of thermo-sonication and ultra-high pressure on the quality and phenolic profile of mango juice[J].Foods, 2019, 8(8):298.

    8. [8]

      冯若怡, 王晓钰, 杨云舒, 等.超高压处理对复合苹果泥微生物和品质的影响[J].食品工业科技, 2020, 41(17):37-44.

    9. [9]

      KAUSHIK N, RAO S P, MISHRA H N.Effect of high pressure and thermal processing on spoilage-causing enzymes in mango (Mangifera indica)[J].Food Research International, 2017, 100:885-893.

    10. [10]

      TRIBST A A L, JÚNIORB R R C L, DE OLIVEIRA M M, et al.High pressure processing of cocoyam, Peruvian carrot and sweet potato:Effect on oxidative enzymes and impact in the tuber color[J].Innovative Food Science and Emerging Technologies, 2016, 34:302-309.

    11. [11]

      XU J Y, WANG Y L, ZHANG X Y, et al.A novel method of a high pressure processing pre-treatment on the juice yield and quality of persimmon[J].Foods, 2021, 10(12):3069.

    12. [12]

      HOUSKA M, SILVA F V M, EVELYN, et al.High pressure processing applications in plant foods[J].Foods, 2022, 11(2):223.

    13. [13]

      DE JESUS A L T, LEITE T S, CRISTIANIANINI M.High isostatic pressure and thermal processing of açaí fruit (Euterpe oleracea Martius):Effect on pulp color and inactivation of peroxidase and polyphenol oxidase[J].Food Research International, 2018, 105:853-862.

    14. [14]

      KHALIQ A, CHUGHTAI M F J, MEHMOOD T, et al.High-pressure processing;principle, applications, impact, and future prospective[M]//Sustainable food processing and engineering challenges.Academic Press, 2021:75-108.

    15. [15]

      TEREFE N S, DELON A, VERSTEEG C.Thermal and high pressure inactivation kinetics of blueberry peroxidase[J].Food Chemistry, 2017, 232:820-826.

    16. [16]

      BLEOANCA I, NEAGU C, TURTOI M, et al.Mild-thermal and high pressure processing inactivation kinetics of polyphenol oxidase from peach puree[J].Journal of Food Process Engineering, 2018, 41(7):e12871.

    17. [17]

      WANG P, QUANSAH J K, PITTS K B, et al.Hygiene status of fresh peach packing lines in georgia[J].LWT-Food Science and Technology, 2021, 139:110627.

    18. [18]

      CHEN L L, BI X F, CAO X M, et al.Effects of high-power ultrasound on microflora, enzymes and some quality attributes of a strawberry drink[J].Journal of the Science of Food and Agriculture, 2018, 98(14):5378-5385.

    19. [19]

      IQBAL A, MURTAZA A, MARSZALEK K, et al.Inactivation and structural changes of polyphenol oxidase in quince (Cydonia oblonga Miller) juice subjected to ultrasonic treatment[J].Journal of the Science of Food and Agriculture, 2020, 100(5):2065-2073.

    20. [20]

      ILLERA A E, SANZ M T, BENITO-ROMAN O, et al.Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice[J].Innovative Food Science and Emerging Technologies, 2018, 47:71-80.

    21. [21]

      周亨乐, 赵剑雷, 冯小平, 等.高场强超声波对芒果多酚氧化酶和过氧化物酶钝化效果的研究[J].保鲜与加工, 2020, 20(2):68-73.

    22. [22]

      TSIKRIKA K, CHU B S, BREMNER H D, et al.The effect of different frequencies of ultrasound on the activity of horseradish peroxidase[J].LWT-Food Science and Technology, 2018, 89:591-595.

    23. [23]

      TSIKRIKA K, LEMOS M A, CHU B S, et al.Effect of ultrasound on the activity of mushroom (Agaricus bisporous) polyphenol oxidase and observation of structural changes using time-resolved fluorescence[J].Food and Bioprocess Technology, 2022, 15(3):656-668.

    24. [24]

      CAO X M, CAI C F, WANG Y L, et al.The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments[J].Innovative Food Science & Emerging Technologies, 2018, 45:169-178.

    25. [25]

      SUO G W, ZHOU C L, SU W, et al.Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage[J].Ultrasonics Sonochemistry, 2022, 84:105974.

    26. [26]

      WANG D L, YAN L F, MA X B, et al.Ultrasound promotes enzymatic reactions by acting on different targets:Enzymes, substrates and enzymatic reaction systems[J].International Journal of Biological Macromolecules, 2018, 119:453-461.

    27. [27]

      WAGHMARE R.Cold plasma technology for fruit based beverages:A review[J].Trends in Food Science & Technology, 2021, 114:60-69.

    28. [28]

      黄明明, 乔维维, 章建浩, 等.低温等离子体冷杀菌对生鲜牛肉主要腐败菌及生物胺抑制效应研究[J].食品科学技术学报, 2018, 36(4):17-23.

    29. [29]

      TAPPI S, RAGNI L, TYLEWICZ U, et al.Browning response of fresh-cut apples of different cultivars to cold gas plasma treatment[J].Innovative Food Science and Emerging Technologies, 2019, 53:56-62.

    30. [30]

      KANG J H, ROH S H, MIN S C.Inactivation of potato polyphenol oxidase using microwave cold plasma treatment[J].Journal of Food Science, 2019, 84(5):1122-1128.

    31. [31]

      BUßLER S, EHLBECK J, SCHLVTER O K.Pre-drying treatment of plant related tissues using plasma processed air:Impact on enzyme activity and quality attributes of cut apple and potato[J].Innovative Food Science and Emerging Technologies, 2017, 40:78-86.

    32. [32]

      MANZOOR M F, HUSSAIN A, GOKSEN G, et al.Probing the impact of sustainable emerging sonication and DBD plasma technologies on the quality of wheat sprouts juice[J].Ultrasonics Sonochemistry, 2023, 92:106257.

    33. [33]

      ZHANG Y, ZHANG J, ZHANG Y, et al.Effects of in-package atmospheric cold plasma treatment on the qualitative, metabolic and microbial stability of fresh-cut pears[J].Journal of the Science of Food and Agriculture, 2021, 101:4473-4480.

    34. [34]

      XU L, GARNER A L, TAO B, et al.Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma[J].Food and Bioprocess Technology, 2017, 10(10):1778-1791.

    35. [35]

      PIPLIYA S, KUMARR S, SRIVASTAV P P.Inactivation kinetics of polyphenol oxidase and peroxidase in pineapple juice by dielectric barrier discharge plasma technology[J].Innovative Food Science and Emerging Technologies, 2022, 80:103081.

    36. [36]

      GU Y X, SHI W Q, LIU R, et al.Cold plasma enzyme inactivation on dielectric properties and freshness quality in bananas[J].Innovative Food Science and Emerging Technologies, 2021, 69:102649.

    37. [37]

      杨延音, 杨治国, 胡世国, 等.水飞蓟素在皮肤科的功效及其在化妆品中的应用进展[J].日用化学工业, 2019, 49(4):259-263.

    38. [38]

      LI L, LI C B, SUN J, et al.Synergistic effects of ultraviolet light irradiation and high-oxygen modified atmosphere packaging on physiological quality, microbial growth and lignification metabolism of fresh-cut carrots[J].Postharvest Biology and Technology, 2021, 173:111365.

    39. [39]

      周成敏, 叶秀萍, 王炳华, 等.UV-C辐照处理对冷藏鲜切黄甜竹笋品质的影响[J].食品研究与开发, 2018, 39(16):178-184.

    40. [40]

      YANNAM S K, PATRAS A, PENDYALA B, et al.Effect of UV-C irradiation on the inactivation kinetics of oxidative enzymes, essential amino acids and sensory properties of coconut water[J].Journal of Food Science and Technology, 2020, 57(10):3564-3572.

    41. [41]

      ALI N, POPOVI V, KOUTCHMA T, et al.Effect of thermal, high hydrostatic pressure, and ultraviolet-C processing on the microbial inactivation, vitamins, chlorophyll, antioxidants, enzyme activity, and color of wheatgrass juice[J].Journal of Food Process Engineering, 2020, 43(1):e13036.

    42. [42]

      DASSAMIOUR S, BOUJOURAF O, SRAOUI L, et al.Effect of postharvest UV-C radiation on nutritional quality, oxidation and enzymatic browning of stored mature date[J].Applied Sciences, 2022, 12(10):4947.

    43. [43]

      HONG X Y, LUO X Q, WANG L H, et al.New insights into the inhibition of hesperetin on polyphenol oxidase:Inhibitory kinetics, binding characteristics, conformational change and computational simulation[J].Foods, 2023, 12(4):905.

    44. [44]

      CACCIARI R D, REYNOSO A, SOSA S, et al.Effect of UVB solar irradiation on laccase enzyme:Evaluation of the photooxidation process and its impact over the enzymatic activity for pollutants bioremediation[J].Amino Acids, 2020, 52(6/7):925-939.

    45. [45]

      SAKIROGLU H, BIRDAL C, BASLAR M, et al.Inactivation kinetics of polyphenol oxidase in an aqueous model system under stand-alone and combined ultrasound and ultraviolet treatments[J].International Journal of Food Properties, 2016, 19(7):1535-1543.

    46. [46]

      SAXENA J, MAKROO H A, SRIVASTAVA B.Effect of ohmic heating on polyphenol oxidase (PPO) inactivation and color change in sugarcane juice[J].Journal of Food Process Engineering, 2017, 40(3):e12485.

    47. [47]

      MANNOZZI C, ROMPOONPOL K, FAUSTER T, et al.Influence of pulsed electric field and ohmic heating pretreatments on enzyme and antioxidant activity of fruit and vegetable juices[J].Foods, 2019, 8(7):247.

    48. [48]

      SÁNCHEZ-VEGA R, RODRÍGUEZ-ROQUE M J, ELEZ-MARTÍNEZ P, et al.Impact of critical high-intensity pulsed electric field processing parameters on oxidative enzymes and color of broccoli juice[J].Journal of Food Processing and Preservation, 2020, 44(3):e14362.

    49. [49]

      TIMMERMANS R A H, ROLAND W S U, VAN KEKEM K, et al.Effect of pasteurization by moderate intensity pulsed electric fields (PEF) treatment compared to thermal treatment on quality attributes of fresh orange juice[J].Foods, 2022, 11(21):3360.

    50. [50]

      HUANG W S, FENG Z S, AILA R, et al.Effect of pulsed electric fields (PEF) on physico-chemical properties, β-carotene and antioxidant activity of air-dried apricots[J].Food Chemistry, 2019, 291:253-262.

    51. [51]

      田美玲.高压脉冲电场(PEF)激活α-淀粉酶/葡萄糖淀粉酶/果胶酶的比较研究[D].重庆:西南大学, 2016.

    52. [52]

      YAPI J C, EKISSI G S E, YA K C, et al.Inactivation kinetics and thermodynamics parameters of polyphenol oxidase and peroxidase activities in an extract from of violet eggplant (Solanum melongena L.)[J].European Journal of Nutrition & Food Safety, 2021, 13(3):83-92.

    1. [1]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 0(0): -.

    2. [2]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 39(5): 29-39. doi: 10.12187/2024.05.004

  • 加载中
计量
  • PDF下载量:  37
  • 文章访问数:  3876
  • 引证文献数: 0
文章相关
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-05-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
李喜宏, 杨梦娇, 梁富浩, 等. 非热加工技术调控果蔬产品内源酶活性研究进展[J]. 轻工学报, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002
引用本文: 李喜宏, 杨梦娇, 梁富浩, 等. 非热加工技术调控果蔬产品内源酶活性研究进展[J]. 轻工学报, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002
LI Xihong, YANG Mengjiao, LIANG Fuhao, et al. Research progress on regulation of endogenous enzyme activities of fruit and vegetable products by non-thermal processing technology[J]. Journal of Light Industry, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002
Citation: LI Xihong, YANG Mengjiao, LIANG Fuhao, et al. Research progress on regulation of endogenous enzyme activities of fruit and vegetable products by non-thermal processing technology[J]. Journal of Light Industry, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002

非热加工技术调控果蔬产品内源酶活性研究进展

    作者简介:李喜宏(1960-),男,辽宁省东港市人,天津科技大学教授,博士,主要研究方向为农产品保鲜与加工。E-mail:lixihong@tust.edu.cn
  • 天津科技大学 食品科学与工程学院/天津科技大学省部共建食品营养与安全国家重点实验室, 天津 300457
基金项目:  山东省重点研发计划项目(2021CXGC010809)

摘要: 基于非热加工技术具有低温杀菌、能更好保持果蔬产品原有营养成分、色泽、新鲜度等优势,着重就5种常用非热加工技术对果蔬产品内源酶活性的调控效果和调控机制进行综述。认为,超高压、超声波、大气压冷等离子体、紫外线辐射和脉冲电场技术通过破坏内源酶的空间结构,可显著降低内源酶的活性。这些非热加工技术在调控果蔬产品内源酶活性时各具优势,不仅可提高果蔬产品的品质,同时也可为果蔬产品加工、贮藏等提供有效的手段和方案。果蔬产品内源酶的失活动力学模型主要包括一阶模型、双相模型、Weibull模型、Hülsheger's和Fermi's经验模型等,通过研究这些模型可更深入地了解非热加工技术调控果蔬产品内源酶活性的机制,进而优化果蔬产品的加工方案以保障产品的品质和安全。然而,非热加工技术的研究仍处于实验阶段,其调控果蔬产品内源酶活性的机制尚不完全明确,在实际生产中还存在设备成本高昂、安全隐患较明显等问题。未来应进一步改进和优化非热加工技术的工艺参数,深入探究非热加工技术对果蔬产品内源酶活性的调控机制,协同应用多种非热加工技术,尽量减少对果蔬产品品质的影响,以期为非热加工技术应用于果蔬深加工及产品工业化生产提供参考。

English Abstract

参考文献 (52) 相关文章 (2)

目录

/

返回文章