JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展

相启森 董闪闪 郑凯茜 王少丹 刘骁

相启森, 董闪闪, 郑凯茜, 等. 大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展[J]. 轻工学报, 2022, 37(3): 1-9. doi: 10.12187/2022.03.001
引用本文: 相启森, 董闪闪, 郑凯茜, 等. 大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展[J]. 轻工学报, 2022, 37(3): 1-9. doi: 10.12187/2022.03.001
XIANG Qisen, DONG Shanshan, ZHENG Kaixi, et al. Research progress of atmospheric cold plasma in the control of food pesticide residues and mycotoxins[J]. Journal of Light Industry, 2022, 37(3): 1-9. doi: 10.12187/2022.03.001
Citation: XIANG Qisen, DONG Shanshan, ZHENG Kaixi, et al. Research progress of atmospheric cold plasma in the control of food pesticide residues and mycotoxins[J]. Journal of Light Industry, 2022, 37(3): 1-9. doi: 10.12187/2022.03.001

大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展

    作者简介: 相启森(1984—),男,山东省枣庄市人,郑州轻工业大学副教授,博士,主要研究方向为食品加工与安全控制。E-mail:xiangqisen2006@163.com;
  • 基金项目: NSFC-河南联合基金项目(U1704113)
    河南省自然科学基金青年项目(202300410497)
    河南省自然科学基金优秀青年基金项目(212300410090)

  • 中图分类号: TS201.1

Research progress of atmospheric cold plasma in the control of food pesticide residues and mycotoxins

  • Received Date: 2021-03-29
    Accepted Date: 2022-04-13

    CLC number: TS201.1

  • 摘要: 在简述大气压冷等离子体(Atmospheric Cold Plasma,ACP)概念和产生方式的基础上,综述了国内外ACP降解食品中农药残留和真菌毒素的研究进展,并归纳分析了ACP对农药残留和真菌毒素的降解机制及影响其降解效果的因素。认为:ACP能有效降解食品中的农药残留和真菌毒素,其机制是产生的活性物质导致农药与真菌毒素结构中的化学键断裂,从而实现有毒物质的降解,而ACP类型和处理参数、放电气体特性、农药及真菌毒素性质等均会影响降解效果。因此,在实际应用中应系统优化ACP处理参数,以达到最佳降解效果。未来应加强降解产物的安全性评估、ACP设备研发等,以促进ACP在食品工业中的产业化应用。
    1. [1]

      孙蕊,张海英,李红卫,等.物理技术降解农产品农药残留的研究进展[J].中国粮油学报,2013,28(8):118-128.

    2. [2]

      李笑樱,印铁,仉磊,等.粮油加工副产物中真菌毒素消减技术研究进展[J].中国粮油学报,2021,36(8):190-195.

    3. [3]

      王刚,王玉龙,张海永,等.真菌毒素形成的影响因素[J].菌物学报,2020,39(3):477-491.

    4. [4]

      MOHSEN G,AMIN M K.Cold plasma as a tool for the elimination of food contaminants:Recent advances and future trends[J].Critical Reviews in Food Science and Nutrition,2020,60(9):1581-1592.

    5. [5]

      KIM K H,KABIR E,JAHAN S A.Exposure to pesticides and the associated human health effects[J].Science of the Total Environment,2017,575:525-535.

    6. [6]

      王世清,孟娟,张岩,等.等离子体对苹果和大白菜中氧化乐果降解效果的影响[J].农业工程学报,2009,25(12):318-323.

    7. [7]

      韩礼,侯亚西,汪俊涵,等.不同清洗方式对生菜表面农药残留的降解效果[J].食品与发酵工业,2011,31(12):76-80.

    8. [8]

      田洪磊,詹萍,李开雄.活性炭对浓缩苹果汁中甲胺磷残留农药吸附性能的研究[J].食品科学,2007,28(5):56-59.

    9. [9]

      MOUSSAVI G,HOSSEINI H,ALAHABADI A.The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon[J].Chemical Engineering Journal,2013,214(1):172-179.

    10. [10]

      JUSOH A,HARTINI W J H,ALI N,et al.Study on the removal of pesticide in agricultural run off by granular activated carbon[J].Bioresource Technology,2011,102(9):5312-5318.

    11. [11]

      刘伟森,朱珍,张兴茂,等.清洗方法对蔬菜中有机磷农药残留去除效果的研究[J].现代食品科技,2010,26(12):1395-1398.

    12. [12]

      FÁBIO G,AMILCAR M J,VALDIR S F,et al.Investigation of chlorimuron-ethyl degradation by Fenton,photo-Fenton and ozonation processes[J].Chemical Engineering Journal,2012,210:444-450.

    13. [13]

      LOZOWICKA B,WOLEJKO E,KACZYNSKI P,et al.Effect of microorganism on behaviour of two commonly used herbicides in wheat/soil system[J].Applied Soil Ecology,2021,162:103879.

    14. [14]

      MANDAL K,SINGH B,JARIYAL M,et al.Microbial degradation of fipronil by Bacillus thuringiensis[J].Ecotoxicology and Environmental Safety,2013,93:87-92.

    15. [15]

      GAO Y,TRUONG Y B,CACIOLI P,et al.Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles[J].Enzyme and Microbial Technology,2014,54:38-44.

    16. [16]

      DENG L Z,TAO Y,MUJUMDAR A S,et al.Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods[J].Trends in Food Science&Technology,2020,106:104-112.

    17. [17]

      LIAO X Y,LIU D H,XIANG Q S,et al.Inactivation mechanisms of non-thermal plasma on microbes:A review[J].Food Control,2017,75:83-91.

    18. [18]

      THIRUMDAS R,SARANGAPANI C,ANNAPURE U S.Cold Plasma:A novel non-thermal technology for food processing[J].Food Biophysics,2015,10(1):1-11.

    19. [19]

      MANDAL R,SINGH A,SINGH A P.Recent developments in cold plasma decontamination technology in the food industry[J].Trends in Food Science&Technology,2018,80:93-103.

    20. [20]

      MACHALA Z,GRAVES D B.Frugal biotech applications of low-temperature plasma[J].Trends in Biotechnology,2018,36(6):579-581.

    21. [21]

      LI J G,XIANG Q S,LIU X F,et al.Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge (DBD) plasma[J].Food Chemistry,2017,232:515-522.

    22. [22]

      PANKAJ S K,MISRA N N,CULLEN P J.Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge[J].Innovative Food Science&Emerging Technologies,2013,19:153-157.

    23. [23]

      相启森,刘秀妨,刘胜男,等.大气压冷等离子体技术在食品工业中的应用研究进展[J].食品工业,2018,39(7):267-271.

    24. [24]

      XIANG Q S,LIU X F,LI J G,et al.Influences of cold atmospheric plasma on microbial safety,physicochemical and sensorial qualities of meat products[J].Journal of Food Science and Technology-Mysore,2018,55(3):846-857.

    25. [25]

      相启森,张嵘,范刘敏,等.大气压冷等离子体在鲜切果蔬保鲜中的应用研究进展[J].食品工业科技,2021,42(1):368-372.

    26. [26]

      BOURKE P,ZIUZINA D,BOEHM D,et al.The potential of cold plasma for safe and sustainable food production[J].Trends in Biotechnology,2018,36(6):615-626.

    27. [27]

      ALI M,CHENG J H,SUN D W.Effects of dielectric barrier discharge cold plasma treatments on degradation of anilazine fungicide and quality of tomato (Lycopersicon esculentum Mill) juice[J].International Journal of Food Science and Technology,2021,56(1):69-75.

    28. [28]

      PHAN K T K,PHAN H T,BOONYAWAN D,et al.Non-thermal plasma for elimination of pesticide residues in mango[J].Innovative Food Science&Emerging Technologies,2018,48:164-171.

    29. [29]

      谢瑾琢,刘红霞,冯鑫鑫,等.氩等离子体技术降解玉米表面毒死蜱的研究[J].西安交通大学学报,2020,54(3):113-118
      ,178.

    30. [30]

      CONG L X,HUANG M M,ZHANG J H,et al.Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce[J].Journal of the Science of Food and Agriculture,2021,101(2):424-432.

    31. [31]

      MOUSAVI S M,IMANI S,DORRANIAN D,et al.Effect of cold plasma on degradation of organophosphorus pesticides used on some agricultural products[J].Journal of Plant Protection Research,2017,57(1):25-35.

    32. [32]

      FENG X X,MA X,LIU H X,et al.Argon plasma effects on maize:Pesticide degradation and quality changes[J].Journal of the Science of Food and Agriculture,2019,99(12):5491-5498.

    33. [33]

      康超娣,相启森,刘骁,等.等离子体活化水在食品工业中应用研究进展[J].食品工业科技,2018,39(7):348-352.

    34. [34]

      KAUSHIK N K,GHIMIRE B,LI Y,et al.Biological and medical applications of plasma-activated media,water and solutions[J].Biological Chemistry,2019,400(1):39-62.

    35. [35]

      THIRUMDAS R,KOTHAKOTA A,ANNAPURE U,et al.Plasma activated water (PAW):Chemi-stry, physico-chemical properties,applications in food and agriculture[J].Trends in Food Science&Technology,2018,77:21-31.

    36. [36]

      ZHENG Y P,WU S J,DANG J,et al.Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water[J].Journal of Hazardous Mate-rials,2019,377:98-105.

    37. [37]

      RANJITHA G T K,VIDHI G,MAHENDRAN R.Effect of plasma activated water (PAW) on chlorpyrifos reduction in tomatoes[J].International Journal of Chemical Studies,2019,7(3):5000-5006.

    38. [38]

      WANG X Y,WANG S H,YAN Y Z,et al.The degradation of Alternaria mycotoxins by dielectric barrier discharge cold plasma[J].Food Control,2020,117:107333.

    39. [39]

      DEVI Y,THIRUMDAS R,SARANGAPANI C,et al.Influence of cold plasma on fungal growth and aflatoxins production on groundnuts[J].Food Control,2017,77:187-191.

    40. [40]

      WIELOGORSKA E,AHMED Y,MENEELY J,et al.A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment[J].Food Chemistry,2019,301:125281.

    41. [41]

      KIS M,MILOSEVIC S,VULIC A,et al.Efficacy of low pressure DBD plasma in the reduction of T-2 and HT-2 toxin in oat flour[J].Food Chemistry,2020,316:126372.

    42. [42]

      HOJNIK N,MODIC M,ZIGON D,et al.Cold atmospheric pressure plasma-assisted removal of aflatoxin B-1 from contaminated corn kernels[J].Plasma Processes and Polymers,2020,18(1):e2000163.

    43. [43]

      IQDIAM B M,FEIZOLLAHI E A,MUHAMMAD F,et al.Reduction of T-2 and HT-2 mycotoxins by atmospheric cold plasma and its impact on quality changes and germination of wheat grains[J].Journal of Food Science,2021,86(4):1354-1371.

    44. [44]

      BAI Y H,CHEN J R,YANG Y,et al. Degradation of organophosphorus pesticide induced by oxygen plasma:Effects of operating parameters and reaction mechanisms[J].Chemosphere,2010,81:408-414.

    45. [45]

      GAVAHIAN M,PALLARES N,AL KHAWLI F,et al.Recent advances in the application of innovative food processing technologies for mycotoxins and pesticide reduction in foods[J].Trends in Food Science&Technology,2020,106:209-218.

    46. [46]

      SCHOLTZ V,PAZLAROVA J,SOUSKOVA H,et al.Nonthermal plasma:A tool for decontamination and disinfection[J].Biotechnology Advances,2015,33:1108-1119.

    47. [47]

      MISRA N N,PANKAJ S K,WALSH T,et al.In-package nonthermal plasma degradation of pesticides on fresh produce[J].Journal of Hazardous Materials,2014,271:33-40.

    48. [48]

      HU Y M,BAI Y H,LI X J,et al.Application of dielectric barrier discharge plasma for degradation and pathways of dimethoate in aqueous solution[J].Separation and Purification Technology,2013,120:191-197.

    49. [49]

      SHI H,COOPER B,STROSHINE R L,et al.Structures of degradation products and degradation pathways of aflatoxin B1 by high-voltage atmospheric cold plasma (HVACP) treatment[J].Journal of Agricultural and Food Chemi-stry,2017,65(30):6222-6230.

    50. [50]

      WANG S Q,HUANG G Q,LI Y P,et al.Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation[J].European Food Research and Technology,2015,241(1):103-113.

  • 加载中
计量
  • PDF下载量:  44
  • 文章访问数:  1930
  • 引证文献数: 0
文章相关
  • 收稿日期:  2021-03-29
  • 修回日期:  2022-04-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
相启森, 董闪闪, 郑凯茜, 等. 大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展[J]. 轻工学报, 2022, 37(3): 1-9. doi: 10.12187/2022.03.001
引用本文: 相启森, 董闪闪, 郑凯茜, 等. 大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展[J]. 轻工学报, 2022, 37(3): 1-9. doi: 10.12187/2022.03.001
XIANG Qisen, DONG Shanshan, ZHENG Kaixi, et al. Research progress of atmospheric cold plasma in the control of food pesticide residues and mycotoxins[J]. Journal of Light Industry, 2022, 37(3): 1-9. doi: 10.12187/2022.03.001
Citation: XIANG Qisen, DONG Shanshan, ZHENG Kaixi, et al. Research progress of atmospheric cold plasma in the control of food pesticide residues and mycotoxins[J]. Journal of Light Industry, 2022, 37(3): 1-9. doi: 10.12187/2022.03.001

大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展

    作者简介:相启森(1984—),男,山东省枣庄市人,郑州轻工业大学副教授,博士,主要研究方向为食品加工与安全控制。E-mail:xiangqisen2006@163.com
  • 郑州轻工业大学 食品与生物工程学院, 河南 郑州 450001
基金项目:  NSFC-河南联合基金项目(U1704113)河南省自然科学基金青年项目(202300410497)河南省自然科学基金优秀青年基金项目(212300410090)

摘要: 在简述大气压冷等离子体(Atmospheric Cold Plasma,ACP)概念和产生方式的基础上,综述了国内外ACP降解食品中农药残留和真菌毒素的研究进展,并归纳分析了ACP对农药残留和真菌毒素的降解机制及影响其降解效果的因素。认为:ACP能有效降解食品中的农药残留和真菌毒素,其机制是产生的活性物质导致农药与真菌毒素结构中的化学键断裂,从而实现有毒物质的降解,而ACP类型和处理参数、放电气体特性、农药及真菌毒素性质等均会影响降解效果。因此,在实际应用中应系统优化ACP处理参数,以达到最佳降解效果。未来应加强降解产物的安全性评估、ACP设备研发等,以促进ACP在食品工业中的产业化应用。

English Abstract

参考文献 (50)

目录

/

返回文章