JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

介质阻挡放电等离子体对单增李斯特菌的杀灭效果及作用机制研究

王博华 薛冬 董闪闪 白艳红

王博华, 薛冬, 董闪闪, 等. 介质阻挡放电等离子体对单增李斯特菌的杀灭效果及作用机制研究[J]. 轻工学报, 2023, 38(3): 17-24,54. doi: 10.12187/2023.03.003
引用本文: 王博华, 薛冬, 董闪闪, 等. 介质阻挡放电等离子体对单增李斯特菌的杀灭效果及作用机制研究[J]. 轻工学报, 2023, 38(3): 17-24,54. doi: 10.12187/2023.03.003
WANG Bohua, XUE Dong, DONG Shanshan and et al. Inactivation effect and mechanism of dielectric barrier discharge plasma against Listeria monocytogenes[J]. Journal of Light Industry, 2023, 38(3): 17-24,54. doi: 10.12187/2023.03.003
Citation: WANG Bohua, XUE Dong, DONG Shanshan and et al. Inactivation effect and mechanism of dielectric barrier discharge plasma against Listeria monocytogenes[J]. Journal of Light Industry, 2023, 38(3): 17-24,54. doi: 10.12187/2023.03.003

介质阻挡放电等离子体对单增李斯特菌的杀灭效果及作用机制研究

    作者简介: 王博华(1998-),男,河南省周口市人,郑州轻工业大学硕士研究生,主要研究方向为肉制品加工与安全控制。E-mail:wangbh1212@163.com;
  • 基金项目: 国家自然科学基金项目(32072356)
    河南省重大公益专项项目(201300110100)

  • 中图分类号: TS201.3

Inactivation effect and mechanism of dielectric barrier discharge plasma against Listeria monocytogenes

  • Received Date: 2022-04-25
    Accepted Date: 2022-07-24

    CLC number: TS201.3

  • 摘要: 采用扫描电子显微镜(SEM)、流式细胞分析、荧光染色等方法研究介质阻挡放电(Dielectric Barrier Discharge,DBD)等离子体对单增李斯特菌(Listeria monocytogenes)的杀灭效果及对其细胞形态、细胞膜变化、胞内活性氧(Reactive Oxygen Species,ROS)水平等的影响。结果表明:经放电功率为20.8 W的DBD等离子体处理80 s后,L.monocytogenes菌落数从初始8.26 lg CFU/mL降低至1.30 lg CFU/mL,其胞内ROS相对水平显著升高了9.5倍(P<0.05);DBD等离子体处理会破坏L.monocytogenes的细胞形态,增强细胞膜通透性并使其发生去极化,且细胞损伤程度随处理时间的延长而显著增加;经DBD等离子体处理后,生理盐水的pH值显著降低,氧化还原电位(ORP)、NO3-、NO-2和H2O2浓度均显著升高。DBD等离子体杀灭L.monocytogenes的作用机制是其可损伤细胞膜、诱导氧化应激损伤等。
    1. [1]

      刘辉,任婧寰,伍雅婷,等.2018年全国食物中毒事件流行特征分析[J].中国食品卫生杂志,2021,33(1):114-117.

    2. [2]

      王雯雯,相启森,白艳红.UV-LEDs技术在食品杀菌保鲜领域中的应用研究进展[J].轻工学报,2022,37(1):46-54.

    3. [3]

      WU D,FEREIDOUN F,ALIRI E B M,et al.Microbial response to some nonthermal physical technologies[J].Trends in Food Science&Technology,2020,95:107-117.

    4. [4]

      相启森,刘秀妨,刘胜男,等.大气压冷等离子体技术在食品工业中的应用研究进展[J].食品工业,2018,39(7):267-271.

    5. [5]

      BOURKE P,ZIUZINA D,BOEHM D,et al.The potential of cold plasma for safe and sustainable food production[J]. Trends in Biotechnology,2018,36(6):615-626.

    6. [6]

      相启森,董闪闪,郑凯茜,等.大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展[J].轻工学报,2022,37(3):1-9.

    7. [7]

      EKEZIE F G C,SUN D W,CHENG J H.A review on recent advances in cold plasma technology for the food industry:Current applications and future trends[J].Trends in Food Science&Technology,2017,69:46-58.

    8. [8]

      DASAN B G,BOYACI I H.Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices,and sour cherry nectar[J].Food and Bioprocess Technology,2018,11(2):334-343.

    9. [9]

      相启森,张嵘,范刘敏,等.大气压冷等离子体在鲜切果蔬保鲜中的应用研究进展[J].食品工业科技,2021,42(1):368-372.

    10. [10]

      陈玥,李书红,孟琬星,等.常压冷等离子体对食源性腐败菌失活作用机制研究[J].食品研究与开发,2021,42(5):71-76.

    11. [11]

      LI M L,LI X A,HAN C,et al.Physiological and metabolomic analysis of cold plasma treated fresh-cut strawberries[J].Journal of Agricultural and Food Chemistry,2019,67(14):4043-4053.

    12. [12]

      DONG S S,FAN L M,MA Y F,et al.Inactivation of polyphenol oxidase by dielectric barrier discharge (DBD) plasma:Kinetics and mechanisms[J].LWT-Food Science and Technology,2021,145:111322.

    13. [13]

      XIANG Q S,LIU X F,LI J G,et al.Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice[J].Food Chemistry,2018,254:201-207.

    14. [14]

      ROSENBERG M,AZEVEDO N F,IVASK A.Propidium iodide staining underestimates viability of adherent bacterial cells[J].Scientific Reports,2019,9:6483.

    15. [15]

      KIM D K,KIM S J,KANG D H.Bactericidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts[J].Food Research International,2017,97:280-287.

    16. [16]

      PAN Y Y,CHENG J H,LV X Y,et al.Assessing the inactivation efficiency of Ar/O2 plasma treatment against Listeria monocytogenes cells:Sublethal injury and inactivation kinetics[J]. LWT-Food Science and Technology,2019,111:318-327.

    17. [17]

      AKAGAWA M,SHIGEMITSU T,SUYAMA K.Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions[J].Bioscience,Biotechnology,and Biochemistry,2003,67(12):2632-2640.

    18. [18]

      ALI M,CHENG J H,SUN D W.Effect of plasma activated water and buffer solution on fungicide degradation from tomato (Solanum lycopersicum) fruit[J].Food Chemistry,2021,350:129195.

    19. [19]

      LIAO X Y,LI J,MUHAMMAD A I,et al.Application of a dielectric barrier discharge atmospheric cold plasma (Dbd-Acp) for Eshcerichia coli inactivation in apple juice[J].Journal of Food Science,2018,83(2):401-408.

    20. [20]

      CHEN C Z,COOPER S L.Interactions between dendrimer biocides and bacterial membranes[J].Biomaterials,2002,23(16):3359-3368.

    21. [21]

      BOOYENS J,THANTSHA M S.Fourier transform infra-red spectroscopy and flow cytometric assessment of the antibacterial mechanism of action of aqueous extract of garlic (Allium sativum) against selected probiotic Bifidobacterium strains[J].BMC Complementary and Alternative Medicine,2014,14:289.

    22. [22]

      GUEDES J P D,DE SOUZA E L.Investigation of damage to Escherichia coli,Listeria monocytogenes and Salmonella enteritidis exposed to Mentha arvensis L.and M.piperita L.essential oils in pineapple and mango juice by flow cytometry[J].Food Microbiology,2018,76:564-571.

    23. [23]

      KALYANARAMAN B,DARLEY-USMAR V,DAVIES K J A,et al.Measuring reactive oxygen and nitrogen species with fluorescent probes:Challenges and limitations[J].Free Radical Biology&Medicine,2012,52(1):1-6.

    24. [24]

      朱育攀.大气压低温等离子体对金黄色葡萄球菌的杀菌效应研究[D].郑州:郑州大学,2019.

    25. [25]

      PAN Y Y,ZHANG YCHENG J H,et al.Inactivation of Listeria monocytogenes at various growth temperatures by ultrasound pretreatment and cold plasma[J]. LWT-Food Science and Technology,2020,118:108635.

    26. [26]

      GONZALEZ-AGUILAR G A,WANG C Y,BUTA J G.Maintaining quality of fresh-cut mangoes using antibrowning agents and modified atmosphere packaging[J].Journal of Agricultural and Food Chemistry,2000,48(9):4204-4208.

    27. [27]

      SU X,TIAN Y,ZHOU H Z,et al.Inactivation efficacy of nonthermal plasma-activated solutions against newcastle disease virus[J].Applied and Environmrntal Microbiology,2018,84(9):E02836-17.

    28. [28]

      THIRUMDAS R,KOTHAKOTA A,ANNAPURE U,et al.Plasma activated water (PAW):Chemistry, physico-chemical properties, applications in food and agriculture[J].Trends in Food Science&Technology,2018,77:21-31.

    29. [29]

      LUKES P,DOLEZALOVA E,SISROVA I,et al.Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water:Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2[J].Plasma Sources Science&Technology,2014,23(1):015019.

    30. [30]

      LIAO X Y,SU Y,LIU D H,et al.Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis)[J].Food Control,2018,94:307-314.

    31. [31]

      KAUSHIK N K,GHIMIRE B,LI Y,et al.Biological and medical applications of plasma activated media,water and solutions[J].Biological Chemistry,2019,400(1):39-62.

    32. [32]

      CABISCOL E,TAMARIT J,ROS J.Oxidative stress in bacteria and protein damage by reactive oxygen species[J].International Microbiology,2000,3(1):3-8.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  2873
  • 引证文献数: 0
文章相关
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-07-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
王博华, 薛冬, 董闪闪, 等. 介质阻挡放电等离子体对单增李斯特菌的杀灭效果及作用机制研究[J]. 轻工学报, 2023, 38(3): 17-24,54. doi: 10.12187/2023.03.003
引用本文: 王博华, 薛冬, 董闪闪, 等. 介质阻挡放电等离子体对单增李斯特菌的杀灭效果及作用机制研究[J]. 轻工学报, 2023, 38(3): 17-24,54. doi: 10.12187/2023.03.003
WANG Bohua, XUE Dong, DONG Shanshan and et al. Inactivation effect and mechanism of dielectric barrier discharge plasma against Listeria monocytogenes[J]. Journal of Light Industry, 2023, 38(3): 17-24,54. doi: 10.12187/2023.03.003
Citation: WANG Bohua, XUE Dong, DONG Shanshan and et al. Inactivation effect and mechanism of dielectric barrier discharge plasma against Listeria monocytogenes[J]. Journal of Light Industry, 2023, 38(3): 17-24,54. doi: 10.12187/2023.03.003

介质阻挡放电等离子体对单增李斯特菌的杀灭效果及作用机制研究

    作者简介:王博华(1998-),男,河南省周口市人,郑州轻工业大学硕士研究生,主要研究方向为肉制品加工与安全控制。E-mail:wangbh1212@163.com
  • 郑州轻工业大学 食品与生物工程学院/河南省冷链食品质量与安全控制 重点实验室, 河南 郑州 450001
基金项目:  国家自然科学基金项目(32072356)河南省重大公益专项项目(201300110100)

摘要: 采用扫描电子显微镜(SEM)、流式细胞分析、荧光染色等方法研究介质阻挡放电(Dielectric Barrier Discharge,DBD)等离子体对单增李斯特菌(Listeria monocytogenes)的杀灭效果及对其细胞形态、细胞膜变化、胞内活性氧(Reactive Oxygen Species,ROS)水平等的影响。结果表明:经放电功率为20.8 W的DBD等离子体处理80 s后,L.monocytogenes菌落数从初始8.26 lg CFU/mL降低至1.30 lg CFU/mL,其胞内ROS相对水平显著升高了9.5倍(P<0.05);DBD等离子体处理会破坏L.monocytogenes的细胞形态,增强细胞膜通透性并使其发生去极化,且细胞损伤程度随处理时间的延长而显著增加;经DBD等离子体处理后,生理盐水的pH值显著降低,氧化还原电位(ORP)、NO3-、NO-2和H2O2浓度均显著升高。DBD等离子体杀灭L.monocytogenes的作用机制是其可损伤细胞膜、诱导氧化应激损伤等。

English Abstract

参考文献 (32)

目录

/

返回文章