JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

关节软骨显微成像技术

夏阳

夏阳. 关节软骨显微成像技术[J]. 轻工学报, 2015, 30(3-4): 142-151. doi: 10.3969/j.issn.2095-476X.2015.3/4.031
引用本文: 夏阳. 关节软骨显微成像技术[J]. 轻工学报, 2015, 30(3-4): 142-151. doi: 10.3969/j.issn.2095-476X.2015.3/4.031
XIA Yang. Articular cartilage by microscopic imaging[J]. Journal of Light Industry, 2015, 30(3-4): 142-151. doi: 10.3969/j.issn.2095-476X.2015.3/4.031
Citation: XIA Yang. Articular cartilage by microscopic imaging[J]. Journal of Light Industry, 2015, 30(3-4): 142-151. doi: 10.3969/j.issn.2095-476X.2015.3/4.031

关节软骨显微成像技术

  • 中图分类号: O433.3;R445.2

Articular cartilage by microscopic imaging

  • Received Date: 2014-12-08
    Available Online: 2015-09-15

    CLC number: O433.3;R445.2

  • 摘要: 对关节软骨组织成像研究中磁共振成像(MRI和μMRI)、偏振光显微术(PLM)、傅里叶变换红外成像(FTIRI)及计算机断层扫描成像(CT)等技术方法进行了综述,指出每一种技术方法利用其自身技术原理均能描述组织退化复杂机制的一个方面,但多学科交叉法被认为是最好的技术手段.
    1. [1]

      CDC.Prevalence and Most Common Causes of Disability Among Adults-United States, 2005[R].Atlanta:Morbidity and Mortality Weekly Report (MMWR),2009.

    2. [2]

      Pond M J, Nuki G.Experimentally-induced osteoarthritis in the dog[J].Ann Rheum Dis,1973,32(4):387.

    3. [3]

      Gregory M H, Capito N, Kuroki K, et al.A review of translational animal models for knee osteoarthritis[J].Arthritis,2012(2012):764621.

    4. [4]

      Maroudas A, Muir H, Wingham J.The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage[J].Biochim Biophys Acta:General Subjects, 1969,177(3):492.

    5. [5]

      Muir H, Bullough P, Maroudas A.The distribution of collagen in human articular cartilage with some of its physiological implications[J].J Bone Joint Surgery, 1970,52(3):554.

    6. [6]

      Clarke I C.Articular cartilage:A review and scanning electron microscope study:1.The interterritorial fibrillar architecture[J].J Bone Joint Surgery,1971,53(4):732.

    7. [7]

      Venn M, Maroudas A.Chemical composition and swelling of normal and osteoarthritic femoral head cartilage[J].Ann Rheum Dis, 1977,36(2):121.

    8. [8]

      Franzen A, Inerot S, Hejderup S O, et al.Variations in the composition of bovine hip articular cartilage with distance from the articular surface[J].Biochem J,1981,195(3):535.

    9. [9]

      Bayliss M T, Venn M, Maroudas A,et al.Structure of proteoglycans from different layers of human articular cartilage[J].Biochem J,1983,209(2):387.

    10. [10]

      Volpi M, Katz E P.On the adaptive structures of the collagen fibrils of bone and cartilage[J].J Biomechanics, 1991,24(1):67.

    11. [11]

      Maroudas A, Wachtel E J, Grushko G,et al.The effect of osmotic and mechanical pressures on water partitioning in articular cartialge[J].Biochim Biophys Acta, 1991,1073(2):285.

    12. [12]

      Chen S S, Falcovitz Y H, Schneiderman R, et al.Depth-dependent compressive properties of normal aged human femoral head articular cartilage:relationship to fixed charge density[J].Osteoarthritis and Cartilage, 2001,9(6):561.

    13. [13]

      Muller C, Khabut A, Dudhia J, et al.Quantitative proteomics at different depths in human articular cartilage reveals unique patterns of protein distribution[J].Matrix Biol,2014(40):34.

    14. [14]

      Xia Y.Averaged and depth-dependent anisotropy of articular cartilage by microscopic imaging[J].Semin Arthritis Rheum,2008,37(5):317.

    15. [15]

      Abragam A.The Principles of Nuclear Magnetism[M].Oxford:Clarendon Press, 1961.

    16. [16]

      Slichter C P.Principles of Magnetic Resonance 3ED(Springer Series in Solid-state Sciences)[M].Berlin:Springer-Verlag,1992.

    17. [17]

      Callaghan P.Principles of Nuclear Magnetic Resonance Microscopy[M].Oxford:Oxford University Press, 1991.

    18. [18]

      Blümich B.Magnetic Resonance Microscopy:Methods and Application in Materials Science, Agriculture and Biomedicine[M].Weinheim:VCH, 1992.

    19. [19]

      Xia Y.Contrast in NMR imaging and microscopy[J].Concepts in Magn Reson,1996,8(3):205.

    20. [20]

      Fullerton G D, Cameron I L, Ord V A.Orientation of tendons in the magnetic field and its effect on T2 relaxation times[J].Radiology,1985,155(2):433.

    21. [21]

      Henkelman R M, Stanisz G J, Kim J K, et al.Anisotropy of NMR properties of tissues[J].Magn Reson Med,1994,32(5):592.

    22. [22]

      Xia Y, Farquhar T, Burton-Wurster N, et al.Origin of cartilage laminae in MRI[J].J Magn Reson Imaging,1997,7(5):887.

    23. [23]

      Xia Y.Relaxation anisotropy in cartilage by NMR microscopy (μMRI) at 14 μm resolution[J].Magn Reson Med, 1998,39(6):941.

    24. [24]

      Gründer W, Kanowski M, Wagner M, et al.Visualization of pressure distribution within loaded joint cartilage by application of angle-sensitive NMR microscopy[J].Magn Reson Med, 2000,43(6):884.

    25. [25]

      Gray M L, Burstein D, Xia Y.Biochemical (and functional) imaging of articular cartilage[J].Semin Musculoskelet Radiol, 2001,5(4):329.

    26. [26]

      Nieminen M T, Rieppo J, Toyras J, et al.T2 relaxation reveals spatial collagen architecture in articular cartilage:A comparative quantitative MRI and polarized light microscopic study[J].Magn Reson Med, 2001,46(3):487.

    27. [27]

      Trattnig S, Mlynarik V, Jung B, et al.Bilaminar pattern of tibial condyle cartilage layer on the fat-suppressed 3D gradient echo images:Artifact or structural and biochemical difference in composition of cartilage[J].Magn Reson Imaging, 2001,19(2):187.

    28. [28]

      Liess C, Lusse S, Karger N, et al.Detection of changes in cartilage water content using MRI T2-mapping in vivo[J].Osteoarthritis and Cartilage, 2002,10(12):907.

    29. [29]

      Yoshioka H, Haishi T, Uematsu T, et al.MR microscopy of articular cartilage at 1.5 T:Orientation and site dependence of laminar structures[J].Skeletal Radiol, 2002,31(9):505.

    30. [30]

      Menezes N M, Gray M L, Hartke J R, et al.T2 and T1rho MRI in articular cartilage systems[J].Magn Reson Med, 2004,51(3):503.

    31. [31]

      Xia Y, Zheng S, Bidthanapally A.Depth-dependent profiles of glycosaminoglycans in articular cartilage by μMRI and histochemistry[J].J Magn Reson Imaging, 2008,28(1):151.

    32. [32]

      Alhadlaq H A, Xia Y.The structural adaptations in compressed articular cartilage by microscopic MRI (μMRI) T2 anisotropy[J].Osteoarthritis Cartilage, 2004,12(11):887.

    33. [33]

      Alhadlaq H A, Xia Y.Modifications of orientational dependence of microscopic magnetic resonance imaging T2 anisotropy in compressed articular cartilage[J].J Magn Reson Imaging,2005, 22(5):665.

    34. [34]

      Wang N, Chopin E, Xia Y.The effects of mechanical loading and gadolinium concentration on the change of T1 and quantification of glycosaminoglycans in articular cartilage by microscopic MRI[J].Phys Med Biol, 2013,58(13):4535.

    35. [35]

      Alhadlaq H A, Xia Y, Moody J B, et al.Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic MRI and polarized light microscopy[J].Ann Rheum Dis, 2004,63(6):709.

    36. [36]

      Gold G E, Han E, Stainsby J, et al.Musculoskeletal MRI at 3.0 T:Relaxation times and image contrast[J].American Journal of Roentgenology,2004,183(2):343.

    37. [37]

      Regatte R R, Akella S V, Borthakur A, et al.Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage:comparison of T2 and T[J].Acad Radiol, 2002, 9(12):1388.

    38. [38]

      Li X, Benjamin Ma C, Link T M, et al.In vivo T and T2 mapping of articular cartilage in ost eoarthritis of the knee using 3 T MRI[J].Osteoarthritis and Cartilage, 2007,15(7):789.

    39. [39]

      Wang N, Xia Y.Depth and orientational dependencies of MRI T2 and T sensitivities towards trypsin degradation and Gd-DTPA2- presence in articular cartilage at microscopic resolution[J].Magn Reson Imaging, 2012,30(3):361.

    40. [40]

      Wang N, Xia Y.Orientational dependent sensitivities of T2 and T towards trypsin degradation and Gd-DTPA2- presence in bovine nasal cartilage[J].Magnetic Resonance Materials in Physics:Biology and Medicine, 2012,25(4):297.

    41. [41]

      Bennett H S.Methods Applicable to the Study of Both Fresh and Fixed Materials Themicroscopical Investigation of Biological Materials with Polarized Light[M].New York:Paul B Hoeber, 1950.

    42. [42]

      Arokoski J P, Hyttinen M M, Lapveteläinen T, et al.Decreased birefringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarized light microscopy[J].Annals of the Rheumatic Diseases,1996,55(4):253.

    43. [43]

      Oldenbourg R, Mei G.New polarized light microscope with precision universal compensator[J].Journal of Microscopy, 1995,180(2):140.

    44. [44]

      Xia Y, Moody J B, Burton-Wurster N, et al.Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage[J].Osteoarthritis and Cartilage, 2001,9(5):393.

    45. [45]

      Xia Y, Moody J B, Alhadlaq H, et al.Characteristics of topographical heterogeneity of articular cartilage over the joint surface of a humeral head[J].Osteoarthritis and Cartilage, 2002,10(5):370.

    46. [46]

      Xia Y, Moody J B, Alhadlaq H,et al.Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution[J].Journal of Magnetic Resonance Imaging, 2003,17(3):365.

    47. [47]

      Alhadlaq H A, Xia Y, Hansen F M, et al.Morphological changes in articular cartilage due to static compression:polarized light microscopy study[J].Connective Tissue Research, 2007,48(2):76.

    48. [48]

      Xia Y, Alhadlaq H, Ramakrishnan N, et al.Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging[J].Journal of Structural Biology, 2008, 164(1):88.

    49. [49]

      Burton-Wurster N, Todhunter R J, Lust G.Animal Models of Osteoarthritis[M].New York:Marcel Dekker, 1993.

    50. [50]

      Hollander A P, Pidoux I, Reiner A,et al.Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration[J].Journal of Clinical Investigation,1995,96(6):2859.

    51. [51]

      Buckwalter J A, Mankin H J.Articular cartilage:Degeneration and osteoarthritis, repair, regeneration, and transplantation[J].Instr Course Lect,1998,47:487.

    52. [52]

      Rieppo J, Toyras J, Nieminen M T, et al.Structure-function relationships in enzymatically modified articular cartilage[J].Cells Tissues Organs, 2003,175(3):121.

    53. [53]

      Rieppo J, Hyttinen M M, Halmesmaki E, et al.Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation[J].Osteoarthritis and Cartilage, 2009,17(4):448.

    54. [54]

      Xia Y, Zheng S K, Szarko M, et al.Anisotropic properties of bovine nasal cartilage[J].Microscopy Research and Technique, 2012,75(3):300.

    55. [55]

      Potter K, Kidder L H, Levin I W, et al.Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging[J].Arthritis and Rheumatism, 2001,44(4):846.

    56. [56]

      Camacho N P, Torzilli P A, Mendelsohn R, et al.FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage[J].Biopolymers, 2001,62(1):1.

    57. [57]

      West P A, Bostrom M P, Torzilli P A, et al.Fourier transform infrared spectral analysis of degenerative cartilage:An infrared fiber optic probe and imaging study[J].Applied Spectroscopy, 2004,58(4):376.

    58. [58]

      David-Vaudey E, Burghardt A, Keshari K,et al.Fourier transform infrared imaging of focal lesions in human osteoarthritic cartilage[J].European Cells and Materials,2005(10):51.

    59. [59]

      Bi X, Li G, Doty S B,et al.A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS)[J].Osteoarthritis and Cartilage, 2005,13(12):1050.

    60. [60]

      Xia Y, Ramakrishnan N, Bidthanapally A.The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI)[J].Osteoarthritis and Cartilage,2007,15(7):780.

    61. [61]

      Ramakrishnan N, Xia Y, Bidthanapally A.Polarized IR microscopic imaging of articular cartilage[J].Physica in Medicine and Biology,2007,52(15):4601.

    62. [62]

      Ramakrishnan N, Xia Y, Bidthanapally A, et al.Determination of zonal boundaries in articular cartilage using infrared dichroism[J].Applied Spectroscopy, 2007,61(12):1404.

    63. [63]

      Kim M, Bi X H, Horton W E, et al.Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage:histologic and biochemical correlations[J].J Biomed Opt,2005,10(3):031105.

    64. [64]

      Marsh D, Schmitt F J, Muller M.Orientation of the infrared transition moments for an alpha-helix[J].Biophysical Journal, 2000,78(5):2499.

    65. [65]

      Gadaleta S J, Landis W J, Boskey A L,et al.Polarized FT-IR microscopy of calcified turkey leg tendon[J].Connective Tissue Research,1996,34(3):203.

    66. [66]

      Coats A M, Hukins D W L, Imrie C T, et al.Polarization artefacts of an FTIR microscope and the consequences for intensity measurements on anisotropic materials[J].Journal of Microscopy, 2003,211(1):63.

    67. [67]

      West P A, Torzilli P A, Chen C, et al.Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation[J].Journal of Biomedical Optics,2005,10(1):014015.

    68. [68]

      Xia Y, Moody J B, Alhadlaq H.Orientational dependence of T2 relaxation in articular cartilage:A microscopic MRI (μMRI) study[J].Magnetic Resonance in Medicine, 2002,48(3):460.

    69. [69]

      Yin J H, Xia Y.Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression[J].Spectrochim Acta A Mol Biomol Spectrosc,2014,133:825.

    70. [70]

      Yin J H, Xia Y.Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression[J].Applied Spectroscopy, 2010,64(11):1199.

    71. [71]

      Yin J H, Xia Y, Lu M.Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression[J].Spectrochim Acta Part A:Molecular & Biomolecular Spectroscopy, 2012,88:90.

    72. [72]

      Rieppo L, Rieppo J, Jurvelin J S, et al.Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage[J].PLoS One, 2012,7(2):32344.

    73. [73]

      Rieppo L, Saarakkala S, Narhi T, et al.Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage[J].Osteoarthritis Cartilage,2012,20(5):451.

    74. [74]

      Batiste D L, Kirkley A, Laverty S, et al.High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis[J].Osteoarthritis and Cartilage, 2004,12(8):614.

    75. [75]

      Van Lenthea G H, Hagenmuller H, Bohnerd M, et al.Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo[J].Biomaterials, 2007,28(15):2479.

    76. [76]

      Palmer A W, Guldberg R E, Levenston M E.Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography[J].Proceeding of National Academy of Sciences of USA,2006,13(51):19255.

    77. [77]

      Cockman M D, Blanton C A, Chmielewski P A, et al.Quantitative imaging of proteoglycan in cartilage using a gadolinium probe and microCT[J].Osteoarthritis and Cartilage, 2006,14(3):210.

    78. [78]

      Kallioniemi A S, Jurvelin J S, Nieminen M T, et al.Contrast agent enhanced pQCT of articular cartilage[J].Physics in Medicine and Biology,2007, 52(4):1209.

    79. [79]

      Taylor C, Carballido-Gamio J, Majumdar S, et al.Comparison of quantitative imaging of cartilage for osteoarthritis:T2, T, dGEMRIC and contrast-enhanced computed tomography[J].Magn Reson Imaging,2009,27(6):779.

    80. [80]

      Xie L, Lin A S, Levenston M E, et al.Quantitative assessment of articular cartilage morphology via EPIC-microCT[J].Osteoarthritis and Cartilage,2009,17(3):313.

    81. [81]

      Silvast T S, Jurvelin J S, Aula A S, et al.Contrast agent-enhanced computed tomography of articular cartilage:association with tissue composition and properties[J].Acta Radiologica,2009,50(1):78.

    82. [82]

      Joshi N S, Bansal P N, Stewart R C, et al.Effect of contrast agent charge on visualization of articular cartilage using computed tomography:exploiting electrostatic interactions for improved sensitivity[J].Journal of the American Chemical Society,2009,131(37):13234.

    83. [83]

      Xia Y, Oravec D, Mittelstaedt D, et al.Depth-dependent lon concentrations in healthy and lesioned articular cartilage by μCT and μMRI[C]//57th Conference of Orthopaedic Research Society,California:Long Beach,2011.

    84. [84]

      Bansal P N, Joshi N S, Entezari V, et al.Cationic contrast agents improve quantification of glycosaminoglycan (GAG) content by contrast enhanced CT imaging of cartilage[J].Journal of Orthopaedic Research,2011,29(5):704.

    85. [85]

      Hunter D J, Zhang Y, Niu J, et al.Increase in bone marrow lesions associated with cartilage loss:A longitudinal magnetic resonance imaging study of knee osteoarthritis[J].Arthritis and Rheum,2006,54(5):1529.

    86. [86]

      Xu L, Hayashi D, Roemer F W, et al.Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis[J].Semin in Arthritis and Rheum,2012,42(2):105.

    87. [87]

      Bullough P, Goodfellow J.The significance of the fine structure of articular cartilage[J].Journal of Bone and Joint Surgery:British Volume, 1968, 50(4):852.

    88. [88]

      Weiss C, Rosenberg L, Helfet A J.An ultrastructural study of normal young adult human articular cartilage[J].Journal of Bone and Joint Surgery,1968,50(4):663.

    89. [89]

      Minns R J, Steven F S.The collagen fibril organization in human articular cartilage[J].Journal of Anatomy,1977,123(2):437.

    90. [90]

      Poole C A, Flint M H, Beaumont B W.Morphological and functional interrelationships of articular cartilage matrices[J].Journal of Anatomy,1984,138(1):113.

    91. [91]

      Eggli P S, Herrmann W, Hunziker E B, et al.Matrix compartments in the growth plate of the proximal tibia of rats[J].The Anatomical Record,1985, 211(3):246.

    92. [92]

      Clark J M.The organisation of collagen fibrils in the superficial zones of articular cartilage[J].Journal of Anatomy,1990,171:117.

    93. [93]

      Chen M H, Broom N D.Concerning the ultrastructural origin of large-scale swelling in articular cartilage[J].Journal of Anatomy,1999,194(3):445.

    94. [94]

      Xia Y, Elder K.Quantification of the graphical details of collagen fibrils in transmission electron micrographs[J].Journal of Microscopy, 2001, 204(1):3.

    95. [95]

      Szarko M, Xia Y.Direct visualisation of the depth-dependent mechanical properties of full-thickness articular cartilage[J].Open Journal of Orthopedics, 2012, 2(2):34.

    96. [96]

      Xia Y.Resolution ‘scaling law’ in MRI of articular cartilage[J].Osteoarthritis and Cartilage,2007,15(4):363.

    97. [97]

      Hayashi D, Guermazi A, Hunter D J.Osteoarthritis year 2010 in review:imaging[J].Osteoarthritis and Cartilage, 2011,9(4):354.

    1. [1]

      张建栋杨忠泮吴恋恋徐大勇朱萍张雯晶堵劲松 . 基于高光谱成像及机器学习的烟叶糖料液施加量判别模型. 轻工学报, 2024, 39(5): 86-94. doi: 10.12187/2024.05.010

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  1168
  • 引证文献数: 0
文章相关
  • 收稿日期:  2014-12-08
  • 刊出日期:  2015-09-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
夏阳. 关节软骨显微成像技术[J]. 轻工学报, 2015, 30(3-4): 142-151. doi: 10.3969/j.issn.2095-476X.2015.3/4.031
引用本文: 夏阳. 关节软骨显微成像技术[J]. 轻工学报, 2015, 30(3-4): 142-151. doi: 10.3969/j.issn.2095-476X.2015.3/4.031
XIA Yang. Articular cartilage by microscopic imaging[J]. Journal of Light Industry, 2015, 30(3-4): 142-151. doi: 10.3969/j.issn.2095-476X.2015.3/4.031
Citation: XIA Yang. Articular cartilage by microscopic imaging[J]. Journal of Light Industry, 2015, 30(3-4): 142-151. doi: 10.3969/j.issn.2095-476X.2015.3/4.031

关节软骨显微成像技术

  • 奥克兰大学 物理和生物研究中心, 美国 罗彻斯特 48309

摘要: 对关节软骨组织成像研究中磁共振成像(MRI和μMRI)、偏振光显微术(PLM)、傅里叶变换红外成像(FTIRI)及计算机断层扫描成像(CT)等技术方法进行了综述,指出每一种技术方法利用其自身技术原理均能描述组织退化复杂机制的一个方面,但多学科交叉法被认为是最好的技术手段.

English Abstract

参考文献 (97) 相关文章 (1)

目录

/

返回文章