JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

计算机视觉在智能交通系统中的应用研究综述

. doi: 10.3969/j.issn.2095-476X.2014.06.013
引用本文: . doi: 10.3969/j.issn.2095-476X.2014.06.013
XIA Yong-quan, JO Kang-hyun, GAN Yong, et al. Review of intelligent transportation system based on computer vision[J]. Journal of Light Industry, 2014, 29(6): 52-60. doi: 10.3969/j.issn.2095-476X.2014.06.013
Citation: XIA Yong-quan, JO Kang-hyun, GAN Yong, et al. Review of intelligent transportation system based on computer vision[J]. Journal of Light Industry, 2014, 29(6): 52-60. doi: 10.3969/j.issn.2095-476X.2014.06.013

计算机视觉在智能交通系统中的应用研究综述

  • 基金项目: 国家自然科学基金项目(61302118)
    河南高校青年骨干教师资助计划项目(2010GGJS-114)

  • 中图分类号: TP391.41;U491

Review of intelligent transportation system based on computer vision

  • Received Date: 2014-06-27
    Available Online: 2014-11-15

    CLC number: TP391.41;U491

  • 摘要: 对计算机视觉在自主车、机器人定位、车辆检测、辅助驾驶、智能交通视频监控、行人检测以及人脸识别等方面的应用研究情况进行了综述,指出提高视觉传感器在恶劣天气情况下的检测和识别率,以及解决视觉传感器产生的大数据量和计算机视觉处理方法对大量计算资源的需求等问题在今后的研究中值得关注.
    1. [1]

      Kristian K,Edouard I,Hrvoje G.Computer vision systems in road vehicles:A review[C]//Proceedings of 2nd Croatian Computer Vision Workshop,Croatian:University of Zagreb Faculty of Electrical Engineering and Computing,2013:25.

    2. [2]

      Elkosantini S,Darmoul S.Intelligent public transportation systems:A review of architectures and enabling technologies[C]//Proceedings of the 2013 International Conference on Advanced Logistics and Transport,Piscataway:IEEE Press,2013:233.

    3. [3]

      Junior J C,Musse S R,and Jung C R.Crowd analysisusing computer vision techniques[J].IEEE Signal Processing Magazine,2010,27(5):27.

    4. [4]

      Geronimo D,Lopez A M,Sappa A D,et al.Survey of pedestrian detection for advanced driver assistance systems[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2010,32:1239.

    5. [5]

      Candamo J,Shreve M,Goldgof D B,et al.Understanding transit scenes:A survey on human behavior-recognition algorithms[J].IEEE Trans on Intelligent Transportation Systems,2010(11):206.

    6. [6]

      Enzweiler M,Gavrila D M.Monocular pedestrian detection:survey and experiments[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31:2179.

    7. [7]

      Zhan B,Dorothy N,Monekosso P R,et al.Crowd analysis:A survey[J].Machine Vision and Applications,2008,19:345.

    8. [8]

      Paisitkriangkrai C S S,Zhang J.Performance evaluation of local features in human classification and detection[J].IET Computer Vision,2008(2):236.

    9. [9]

      Munder S,Gavrila D M.An experimental study on pedestrian classification[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28:1863.

    10. [10]

      Sivaraman S,Trivedi M M.Looking at vehicles on the road:A survey of vision-based vehicle detection,tracking,and behavior analysis[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(4):1773.

    11. [11]

      Misnan M F,Arshad N H M,Shauri,et al.Real-time vision based sensor implementation on unmanned aerial vehicle for features detection technique of low altitude mapping[C]//Proceedings of the 2013 IEEE Conference on Systems,Process & Control,Piscataway:IEEE Press,2013:289.

    12. [12]

      Giseok K,Cho J S,Vision-based vehicle detection and inter-vehicle distance estimation[C]//Proceedings of the 201212th International Conference on Control,Automation and Systems,Piscataway:IEEE Press,2012:625

    13. [13]

      Li X,Guo X S.Vision-based method for forward vehicle detection and tracking[C]//Proceedings of the 2013 International Conference on Mechanical and Automation Engineering,Piscataway:IEEE Press,2013:128.

    14. [14]

      Sivaraman S,Trivedi M M.A review of recent developments in vision-based vehicle detection[J].Intelligent Vehicles Symposium,2013,6(3):310.

    15. [15]

      Minkyu C,Lee W,Yoon C Y,et al.Vision-based vehicle detection system with consideration of the detecting location[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(3):1243.

    16. [16]

      Tsai Y M,Tsai C C,Huang K Y,et al.An intelligent vision-based vehicle detection and tracking system for automotive applications[C]//Proceedings of the 2011 IEEE International Conference on Consumer Electronics,Piscataway:IEEE Press,2011:113.

    17. [17]

      Liu X,Sun Z P,He H G.On-road vehicle detection fusing radar and vision[C]//Proceedings of the 2011 IEEE International Conference on Vehicular Electronics and Safety,Piscataway:IEEE Press,2011:150.

    18. [18]

      Wang X Y,Bo W,Lu S.Real-time on-road vehicle detection algorithm based on monocular vision[C]//Proceedings of the 20122nd International Conference on Computer Science and Network Technology,Piscataway:IEEE Press,2012:772.

    19. [19]

      Chi F H,Huo C L,Yu Y H,et al.A robust tracking approach for vision-based forward vehicle detection[C]//Proceedings of the 2012 International Conference on Fuzzy Theory and Its Applications,Piscataway:IEEE Press,2012:244.

    20. [20]

      Liu Y L,Tian B,Chen S H,et al.A survey of vision-based vehicle detection and tracking techniques in ITS[C]//Proceedings of the 2013 IEEE International Conference on Vehicular Electronics and Safety,Piscataway:IEEE Press,2013:72.

    21. [21]

      Hu Y P,He Q,Zhuang X B,et al.Algorithm for vision-based vehicle detection and classification[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics,Piscataway:IEEE Press,2013:568.

    22. [22]

      Arshad N M,Razak N A.Vision-based detection technique for effective line-tracking autonomus vehicle[C]//Proceedings of the IEEE 8th International Colloquium on Signal Processing and its Applications,Piscataway:IEEE Press,2012:441.

    23. [23]

      Chen Y L,Wu B F,Huang H Y,et al.A real-time vision system for nighttime vehicle detection and traffic surveillance[J].IEEE Transactions on Industrial Electronics,2011,58(5):2030.

    24. [24]

      Nguyen V D,Nguyen T T,Nguyen D D,et al.Toward real-time vehicle detection using stereo vision and an evolutionary algorithm[C]//Proceedings of the IEEE 75th Vehicular Technology Conference,Piscataway:IEEE Press,2012:1.

    25. [25]

      Levinson J,Askeland J,Becker J,et al.Towards fully autonomous driving:Systems and algorithms[C]//Proceedings of the IEEE Symposium-IV in Intelligent Vehicles Symposium,Piscataway:IEEE Press,2011:163.

    26. [26]

      Timofte R,Prisacariu V A,Van G L,et al.Combining Traffic Sign Detection with 3d Tracking Towards Better Driver Assistance[M].Singapore:World Scientific Publishing,2011:76.

    27. [27]

      Timofte R,Zimmermann K,Gool L V.Multi-view traffic sign detection,recognition,and 3rd localization[J].Machine Vision and Applications,2014,25(3):633.

    28. [28]

      Stallkamp J,Schlipsing M,J Salmen,et al.Man vs.computer:Benchmarking machine learning algorithms for traffic sign recognition[J].Neural Networks,2012,32:323

    29. [29]

      Møgelmose A,Trivedi M M,Moeslund T B.Vision based traffic sign detection and analysis for intelligent driver assistance systems:Perspectives and survey[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(4):1484.

    30. [30]

      Adorni G,Bergenti F,Cagnoni S.Vehicle license platerecognition by means of cellular automata[C]//Proceeding of the IEEE International Conference on Intelligent Vehicles,Piscataway:IEEE Press,1998,689.

    31. [31]

      Cowell J R.Syntactic pattern recognizer for vehicle identification numbers[J].Image and Vision Computation,1995,13(1):13.

    32. [32]

      Davies P,Emmott N,Ayland N.License plate recognition technology for toll violation enforcement[C]//IEEE Colloquium on Image Analysis for Transport Applications,UK:IET Press,1990:71.

    33. [33]

      Draghici S.A neural network based artificial vision system for license plate recognition[J].Neural Systems,1997(8):113.

    34. [34]

      Emiris D M,Koulouriotis D E.Automated optic recognition of alphanumeric content in car license plates in a semi-structured environment[C]//Proceeding of the International Conference on Image Processing,Piscataway:IEEE Press,2001:50.

    35. [35]

      Miyamoto K,Nagano K,Tamagawa M I,et al.Vehicle license plate recognition by image analysis[C]//Proceeding of the International Conference on Industrial Electronics,Control and Instrumentation,Piscataway:IEEE Press,1991:1734.

    36. [36]

      Naito T,Tsukada T,Yamada K,et al.Robust license-plate recognition method for passing vehicles under outside environment[J].IEEE Transactions On Vehicle Technology,2000,49:2309.

    37. [37]

      Parisi R,Claudio E D,Lucarelli G,et al.Car plate recognition by neural networks and image processing[C]//Proceedings of the IEEE International Symposium on Circuits and Systems,Piscataway:IEEE Press,1998:195.

    38. [38]

      Sirithinaphong T,Chamnongthai K.The recognition of car license plate for automatic parking system[C]//Proceedings of the 5th International Symposium on Signal Processing and its Applications,Piscataway:IEEE Press,1998:455.

    39. [39]

      Yamaguchi K,Nagaya Y,Ueda K,et al.A method for identifying specific vehicles using template matching[C]//Proceedings of the IEEE International Conference on Intelligent Transportation Systems,Piscataway:IEEE Press,1999:8.

    40. [40]

      Zhang W,Kosecka J.Localization based on building recognition[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops,Piscataway:IEEE Press,2005:2.

    41. [41]

      Robertson D,Cipolla R.An image-based system for urban navigation[C]//Proceedings of the 15th Annual British Machine Vision Conference,Piscataway:IEEE Press,2004:8.

    42. [42]

      Shao H,Svoboda T,Tuytelaars T,et al.Hpat indexing for fast object/scene recognition based on local appearance[J].Computer Lecture Notes on Image and Video Retrieval,2003,2728:71.

    43. [43]

      Goedeme T,Tuytelaars T.Fast wide baseline matching for visual navigation[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,UK:IET Press,2004:24.

    44. [44]

      Torralba A,Murphy K,Freeman W,et al.Context-based vision system for place and object recognition[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision,Piscataway:IEEE Press,2003:273.

    45. [45]

      Gehrig S K,Stein F J.Dead reckoning and cartography using stereo vision for an autonomous car[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,Piscataway:IEEE Press,1999:507.

    46. [46]

      Gehrig S K,Stein F J.Dead reckoning and cartography using stereo vision for an autonomous car[C]//Proceedings of IEEE/RSJ InternationalConference on Intelligent Robots and Systems,Piscataway:IEEE Press,1999:1507.

    1. [1]

      卢晓波徐海朱俊召张宇谭健高冠男胡军华林龙 . 基于机器视觉的加热卷烟烟支端部质量检测系统设计. 轻工学报, 2024, 0(0): -.

    2. [2]

      张伟伟姬远鹏元春波王君婷齐晓任张卫正李萌饶智 . 基于改进Mask R-CNN模型的粘连烟丝识别方法. 轻工学报, 2024, 39(5): 78-85. doi: 10.12187/2024.05.009

    3. [3]

      贾尚羲张怡雪石盼盼王昱李可 . 不同时长超声波处理对鹰嘴豆分离蛋白乳化液稳定性的影响. 轻工学报, 2024, 39(5): 40-49. doi: 10.12187/2024.05.005

    4. [4]

      吴晓东刘畅李俊胡良志贺凌晨袁海霞李强黄锦标 . 基于高光谱检测的烟丝加香均匀性表征方法. 轻工学报, 2024, 39(5): 95-101. doi: 10.12187/2024.05.011

    5. [5]

      倪众楚鹏飞林颖刘玉欣 . 低温长时间热处理过程中氧化和加热对海参体壁胶原纤维结构的影响. 轻工学报, 2024, 0(0): -.

    6. [6]

      李浩佳贺诗华曹艺泽郭西玉朱由余赵玮钦黄淳 . 以碳量子点为荧光信号的生物传感器构建及其在金银花 Pb2+ 检测中的应用. 轻工学报, 2024, 0(0): -.

    7. [7]

      张建栋杨忠泮吴恋恋徐大勇朱萍张雯晶堵劲松 . 基于高光谱成像及机器学习的烟叶糖料液施加量判别模型. 轻工学报, 2024, 39(5): 86-94. doi: 10.12187/2024.05.010

  • 加载中
计量
  • PDF下载量:  40
  • 文章访问数:  1142
  • 引证文献数: 0
文章相关
  • 收稿日期:  2014-06-27
  • 刊出日期:  2014-11-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
. doi: 10.3969/j.issn.2095-476X.2014.06.013
引用本文: . doi: 10.3969/j.issn.2095-476X.2014.06.013
XIA Yong-quan, JO Kang-hyun, GAN Yong, et al. Review of intelligent transportation system based on computer vision[J]. Journal of Light Industry, 2014, 29(6): 52-60. doi: 10.3969/j.issn.2095-476X.2014.06.013
Citation: XIA Yong-quan, JO Kang-hyun, GAN Yong, et al. Review of intelligent transportation system based on computer vision[J]. Journal of Light Industry, 2014, 29(6): 52-60. doi: 10.3969/j.issn.2095-476X.2014.06.013

计算机视觉在智能交通系统中的应用研究综述

  • 郑州轻工业学院 计算机与通信工程学院, 河南 郑州 450001;
  • 蔚山大学, 韩国 蔚山 680-749;
  • 郑州轻工业学院 应急平台信息技术河南省工程实验室, 河南 郑州 450001
基金项目:  国家自然科学基金项目(61302118)河南高校青年骨干教师资助计划项目(2010GGJS-114)

摘要: 对计算机视觉在自主车、机器人定位、车辆检测、辅助驾驶、智能交通视频监控、行人检测以及人脸识别等方面的应用研究情况进行了综述,指出提高视觉传感器在恶劣天气情况下的检测和识别率,以及解决视觉传感器产生的大数据量和计算机视觉处理方法对大量计算资源的需求等问题在今后的研究中值得关注.

English Abstract

参考文献 (46) 相关文章 (7)

目录

/

返回文章