JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Article Contents
CHEN Kun, HUANG Fuli, WU Chengcheng, et al. The impact of high emissivity heating elements on temperature and aerosol emission in heated tobacco products[J]. Journal of Light Industry.
Citation: CHEN Kun, HUANG Fuli, WU Chengcheng, et al. The impact of high emissivity heating elements on temperature and aerosol emission in heated tobacco products[J]. Journal of Light Industry. shu

The impact of high emissivity heating elements on temperature and aerosol emission in heated tobacco products

  • Corresponding author: TANG Wei, twntdx@163.com
  • Received Date: 2023-10-20
    Accepted Date: 2024-01-16
    Available Online: 2024-09-11
  • To explore the impact of radiative heat transfer on the temperature distribution and aerosol release in centrally heated cigarettes, a high-emissivity heating element was fabricated by coating a low-emissivity heating elementwith a silicone high-emissivity coating. The emissivity values of the high / low emissivity heating elements were measured, and simulations and measurements of the temperature distribution and actual temperatures at specific locationswithin the cigarette during heating with both types of elements were conducted. Additionally, the aerosol releaseof the heating device during the heating process were examined. The results showed that the emissivity values of the high / low emissivity heating elements were 90% and 10% respectively. After heating for 200 seconds using the same temperature curve setup, compared to the low-emissivity heating element, the internal average temperature of the cigarette heated by the high-emissivity heating element was higher (154. 1 ℃ ), with a smaller temperature difference from the heating element and a more uniform temperature distribution. When heated by the high-emissivityheating element, the total particulate matter, nicotine, and glycerol release in the cigarette aerosol increased by 42. 8%, 17. 6%, and 44. 5% respectively, compared to those heated by the low-emissivity heating element. These findings confirm that radiative heat transfer plays a crucial role in enhancing the heating efficiency of centrally heatedcigarettes, providing theoretical guidance and data support for the design and improvement of central heating tobaccodevices.
  • 加载中
    1. [1]

      张柯,付丽丽,王诗雨,等. 低氧加热状态下温度对加热卷烟用再造烟叶热转化的影响[J]. 轻工学报,2023,38(3):73-80.

    2. [2]

      崔华鹏,陈黎,樊美娟,等. 电加热卷烟气溶胶物理特性的表征[J]. 轻工学报,2022,37(2):87-93
      ,101.

    3. [3]

      张贾宝,王轶群,梁淼,等. 加热卷烟烟叶原料低温热解特性及其与感官品质相关性分析[J]. 轻工学报,2023,38(3):94-101.

    4. [4]

      张丽,王维维,张小涛,等. 加热不燃烧卷烟气溶胶中主要成分的转移行为[J]. 烟草科技,2019,52(3):46-55.

    5. [5]

      张虎,段沅杏,杨柳,等. 加热卷烟气溶胶化学成分分析研究进展[J]. 中国烟草学报,2021,27(6):120-126.

    6. [6]

      陈超英. 变革与挑战:新型烟草制品发展展望[J]. 中国烟草学报,2017,23(3):14-18.

    7. [7]

      胡彬,何四清. 新型烟草制品的发展及对烟草行业的影响[J]. 环球市场信息导报,2015(15):34-35.

    8. [8]

      司晓喜,汤建国,朱瑞芝,等. 两种抽吸模式下电加热不燃烧卷烟烟气气溶胶的粒径分布[J]. 烟草科技,2018,51(8):47-52.

    9. [9]

      吴键,陈震,黄峰,等. 加热卷烟叶丝等温热失重及关键成分释放特性分析[J]. 轻工学报,2023,38(3):87-93
      ,111.

    10. [10]

      EATON D,JAKAJ B,FORSTER M,et al. Assessment of tobacco heating product THP1.0. Part 2:Product design,operation and thermophysical characterisation[J]. RegulatoryToxicology and Pharmacology,2018,93:4-13.

    11. [11]

      MONTEITH J L,SZEICZ G. Radiative temperature in the heat balance of natural surfaces[J]. Quarterly Journal of the Royal Meteorological Society,1962,88(378):496-507.

    12. [12]

      陈则韶,贾磊,谭洋,等. 烟草导热系数与含水率的变化关系[J]. 中国科学技术大学学报,2003,33(1):92-98.

    13. [13]

      林慧,堵劲松,李斌,等. 基于TPS法的烟叶热物性测试及其导热系数预测模型的建立[J]. 河南农业科学,2014,43(2):155-160.

    14. [14]

    15. [15]

      陈兴付,杨德勇,刘相东,等. 辐射器辐射特性与谷物吸收特性研究[J]. 干燥技术与设备,2016,35(1):21-34.

    16. [16]

      侯兰田,汤大新,李玉润. 木材的红外光谱和非匹配吸收干燥机理研究[J]. 红外研究,1983,2(1):1-7.

    17. [17]

      洪群业,郑路,程多福,等. 国内加热不燃烧型卷烟专利技术统计分析[J]. 烟草科技,2017,50(11):66-74.

    18. [18]

      RAMAN A P,ABOU ANOMA M,ZHU L X,et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature,2014,515(7528):540-544.

    19. [19]

      HE L H,ZHANG M J,GU H Z,et al. The influence of thermal radiation on effective thermal conductivity in porousmaterial [J ]. Interceram-International Ceramic Review,2016,65(6):237-243.

    20. [20]

      中华人民共和国家质量监督检验检疫总局,中国国家标准化管理委员会. 烟草及烟草制品调节和测试的大气环境:GB/T 16447—2004[S]. 北京:中国标准出版社,2005.

    21. [21]

      赵文康, 罗彦波, 王兵, 等. ISO和HCI抽吸模式下卷烟燃烧状态与主流烟气成分对比分析[J]. 烟草科技, 2021, 54(9):72-79.

    22. [22]

      BOUÉ S,GOEDERTIER D,HOENG J,et al. State-of-theartmethods and devices for the generation,exposure,and collection of aerosols from heat-not-burn tobacco products[J ]. Toxicology Research and Application, 2020, 4:239784731989786.

    23. [23]

      中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会发布. 卷烟用常规分析用吸烟机测定总粒相物和焦油:GB/T 19609—2004. 北京:中国标准出版社,2004.

    24. [24]

      崔华鹏,陈黎,樊美娟,等. 加热温度对加热卷烟气溶胶物理特性的影响[J]. 烟草科技,2022,55(4):36-41.

    25. [25]

      于淼,卢凤菊,沈伯雄,等. 三段式加热传统卷烟烟气中主要成分的逐口释放行为研究[J]. 河北工业大学学报,2022,51(3):74-79.

    26. [26]

      周慧明,刘鸿,刘广超,等. 自制研究平台不同加热温度下电加热卷烟主要成分的释放行为[J]. 烟草科技,2021,54(6):50-57.

Article Metrics

Article views(783) PDF downloads(7) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return