JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

水热处理温度对玉米淀粉-绿原酸复合物结构及消化性能的影响

唐艳红 李书鋆 张义平 曹煜婕 曾钰琪 姜晓冰

唐艳红, 李书鋆, 张义平, 等. 水热处理温度对玉米淀粉-绿原酸复合物结构及消化性能的影响[J]. 轻工学报, 2024, 39(4): 34-41. doi: 10.12187/2024.04.005
引用本文: 唐艳红, 李书鋆, 张义平, 等. 水热处理温度对玉米淀粉-绿原酸复合物结构及消化性能的影响[J]. 轻工学报, 2024, 39(4): 34-41. doi: 10.12187/2024.04.005
TANG Yanhong, LI Shujun, ZHANG Yiping, et al. Effect of heat temperature on the structures and digestibility of corn starch-chlorogenic acid complexes[J]. Journal of Light Industry, 2024, 39(4): 34-41. doi: 10.12187/2024.04.005
Citation: TANG Yanhong, LI Shujun, ZHANG Yiping, et al. Effect of heat temperature on the structures and digestibility of corn starch-chlorogenic acid complexes[J]. Journal of Light Industry, 2024, 39(4): 34-41. doi: 10.12187/2024.04.005

水热处理温度对玉米淀粉-绿原酸复合物结构及消化性能的影响

    作者简介: 唐艳红(1977—),女,河南省漯河市人,漯河食品工程职业大学副教授,主要研究方向为食品加工与食品安全检测。E-mail:tyh_2022@126.com;
  • 基金项目: 河南师范大学博士科研启动基金项目(5101049170832)。
    国家自然科学基金项目(32272432)
    河南师范大学博士后基金项目(5101049470223)

  • 中图分类号: TS231

Effect of heat temperature on the structures and digestibility of corn starch-chlorogenic acid complexes

  • Received Date: 2024-01-23
    Accepted Date: 2024-02-19
    Available Online: 2024-08-15

    CLC number: TS231

  • 摘要: 分别在不同水热处理温度(60 ℃、70 ℃、80 ℃和90 ℃)下制备玉米淀粉-绿原酸复合物,并通过其绿原酸含量、复合指数(CI)、晶体结构、体外消化性能等 探究水热处理温度对玉米淀粉-绿原酸复合物结构及消化性能的影响。结果表明:随着水热处理温度的升高,玉米淀粉-绿原酸复合物中的CI逐渐由4.27%增加至10.65%,绿原酸含量先增加后减少,80 ℃下制备的玉米淀粉-绿原酸复合物所结合的绿原酸含量最多(6.13 mg/g),而过多的绿原酸虽能促进玉米淀粉双螺旋的形成,但会阻碍玉米淀粉重新形成有序的晶体结构;玉米淀粉-绿原酸复合物结构随水热处理温度升高而发生的变化会导致其糊化稳定性升高和抗消化性能增强,抗消化淀粉(RS)含量由20.49%增加到30.69%。因此,通过控制水热处理温度,可调节玉米淀粉与绿原酸之间的相互作用,进而调控玉米淀粉的消化性能。
    1. [1]

      HESS A,KRESS S,RAKETE S,et al.Influence of the fat/carbohydrate component of snack food on energy intake pattern and reinforcing properties in rodents[J].Behavioural Brain Research,2019,364:328-333.

    2. [2]

      KOROMPOKIS K,DELCOUR J A.Components of wheat and their modifications for modulating starch digestion: Evidence from in vitro and in vivo studies[J].Journal of Cereal Science,2023,113:103743.

    3. [3]

      HAN M J,BAO W J,WU Y W,et al.Insights into the effects of caffeic acid and amylose on in vitro digestibility of maize starch-caffeic acid complex[J].International Journal of Biological Macromolecules,2020,162:922-930.

    4. [4]

      WANG J Y,JIANG X F,GUO Z B,et al.Insights into the multi-scale structural properties and digestibility of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation[J].Food Chemistry,2021,361:130171.

    5. [5]

      JIANG X F,WANG J Y,LI L X,et al.Effect of chlorogenic acid on lotus seed starch gelatinization behavior and complexation mode during microwave treatment[J].Food Hydrocolloids,2023,144:108925.

    6. [6]

      BORDENAVE N,HAMAKER B R,FERRUZZI M G.Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods[J].Food & Function,2014,5(1):18-34.

    7. [7]

      XU T,LI X X,JI S Y,et al.Starch modification with phenolics:Methods,physicochemical property alteration,and mechanisms of glycaemic control[J].Trends in Food Science & Technology,2021,111:12-26.

    8. [8]

      DENG N,BIAN X F,LUO S J,et al.The starch-polyphenol inclusion complex:Preparation, characterization and digestion[J].Food Bioscience,2023,53:102655.

    9. [9]

      SUN L J,MIAO M.Dietary polyphenols modulate starch digestion and glycaemic level:A review[J].Critical Reviews in Food Science and Nutrition,2020,60(4):541-555.

    10. [10]

      AMOAKO D,AWIKA J M.Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose[J].Current Opinion in Food Science,2016,8:14-18.

    11. [11]

      CHI C D,WANG H W,WANG S P,et al.Promoting starch interaction with caffeic acid during hydrothermal treatment for slowing starch digestion[J].Innovative Food Science & Emerging Technologies,2022,82:103168.

    12. [12]

      ALTHAWAB S A,AMOAKO D B,ANNOR G A,et al.Stability of starch-proanthocyanidin complexes to in-vitro amylase digestion after hydrothermal processing[J].Food Chemistry,2023,421:136182.

    13. [13]

      ZHANG Y P,CHI C D,HUANG X Y,et al.Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract[J].Carbohydrate Polymers,2017,171:242-251.

    14. [14]

      ZHANG Y P,ZHONG S W,CHI C D,et al.Tailoring assembly behavior of starches to control insulin release from layer-by-layer assembled colloidal particles[J].International Journal of Biological Macromolecules,2020,160:531-537.

    15. [15]

      王雨生,陈海华,赵阳,等.热处理对不同直链淀粉含量的玉米淀粉理化性质的影响[J].中国粮油学报,2016,31(9):45-51.

    16. [16]

      赵康云,朴春红,张思维,等.亚糊化热处理对玉米淀粉-胡椒碱复合物功能特性的影响[J].食品工业科技,2023,44(6):82-88.

    17. [17]

      王庆华,杜婷婷,张智慧,等.绿原酸的药理作用及机制研究进展[J].药学学报,2020,55(10):2273-2280.

    18. [18]

      CHEN Y,QIN L K,WEN A Y,et al.Three-solvent extracting method comprehensively evaluates phenolics profile and antioxidant activities of Tartary buckwheat[J].Journal of Food Processing and Preservation,2021,45(1):e15020.

    19. [19]

      CHEN L,TIAN Y Q,SUN B H,et al.Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD[J].Food Chemistry,2018,242:131-138.

    20. [20]

      DU J J,YANG Z K,XU X N,et al.Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch[J].Food Hydrocolloids,2019,91:256-262.

    21. [21]

      ZHANG Q Z,FAN S Y,XIE H J,et al.Polyphenols from pigmented quinoa as potential modulators of maize starch digestion:Role of the starch-polyphenol inclusion and non-inclusion complexes[J].Food Hydrocolloids,2023,144:108975.

    22. [22]

      ENGLYST H N,KINGMAN S M,CUMMINGS J H.Classification and measurement of nutritionally important starch fractions[J].European Journal of Clinical Nutrition,1992,46(Suppl 2):S33-S50.

    23. [23]

      JIN N,KONG D D,WANG H Y.Effects of temperature and time on gelatinization of corn starch employing gradient isothermal heating program of rapid visco analyzer[J].Journal of Food Process Engineering,2019,42(7):e13264.

    24. [24]

      XING J J,LI D,WANG L J,et al.Temperature thresholds and time-temperature dependence of gelatinization for heat-moisture treated corn starch[J].Journal of Food Engineering,2018,217:43-49.

    25. [25]

      XING J J,LI D,WANG L J,et al.Relationship between biphasic endotherms and multi-stage gelatinization of corn starch in excess water[J].LWT-Food Science and Technology,2017,81:335-342.

    26. [26]

      LI S L,WARD R,GAO Q Y.Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean (Phaseolus radiatus) starch[J].Food Hydrocolloids,2011,25(7):1702-1709.

    27. [27]

      CAPRON I,ROBERT P,COLONNA P,et al.Starch in rubbery and glassy states by FTIR spectroscopy[J].Carbohydrate Polymers,2007,68(2):249-259.

    28. [28]

      CHI C D,REN W W,YANG Y,et al.Starch ordered structures control starch reassembly behaviors during heat-moisture treatment for modulating its digestibility[J].Food Chemistry,2024,430:136966.

    29. [29]

      NGO T V,KUSUMAWARDANI S,KUNYANEE K,et al.Polyphenol-modified starches and their applications in the food industry:Recent updates and future directions[J].Foods,2022,11(21):3384.

    30. [30]

      ZHANG S H,ZHU S,ZHONG F,et al.Fish collagen peptides,an effective starch gelatinization regulator,modify the processing properties and improve the nutritional value of wheat starch[J].Food Hydrocolloids,2024,149:109612.

    31. [31]

      CAI L M,BAI Y J,SHI Y C.Study on melting and crystallization of short-linear chains from debranched waxy starches by in situ synchrotron wide-angle X-ray diffraction[J].Journal of Cereal Science,2012,55(3):373-379.

    32. [32]

      于中玉,林楠,黄佳琪,等.木糖对糯米淀粉糊化性质的影响[J].粮食与油脂,2022,35(8):26-29
      ,51.

    33. [33]

      ŠÁRKA E,DVOŘÁČEK V.New processing and applications of waxy starch (a review)[J].Journal of Food Engineering,2017,206:77-87.

    34. [34]

      CAI J J,CHAO C,NIU B,et al.New insight into the interactions among starch,lipid and protein in model systems with different starches[J].Food Hydrocolloids,2021,112:106323.

    1. [1]

      胡新楠朱成凯胡中泽纪执立金伟平郭城沈汪洋 . 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响. 轻工学报, 2024, 0(0): -.

    2. [2]

      贾尚羲张怡雪石盼盼王昱李可 . 不同时长超声波处理对鹰嘴豆分离蛋白乳化液稳定性的影响. 轻工学报, 2024, 39(5): 40-49. doi: 10.12187/2024.05.005

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  1412
  • 引证文献数: 0
文章相关
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-02-19
  • 刊出日期:  2024-08-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
唐艳红, 李书鋆, 张义平, 等. 水热处理温度对玉米淀粉-绿原酸复合物结构及消化性能的影响[J]. 轻工学报, 2024, 39(4): 34-41. doi: 10.12187/2024.04.005
引用本文: 唐艳红, 李书鋆, 张义平, 等. 水热处理温度对玉米淀粉-绿原酸复合物结构及消化性能的影响[J]. 轻工学报, 2024, 39(4): 34-41. doi: 10.12187/2024.04.005
TANG Yanhong, LI Shujun, ZHANG Yiping, et al. Effect of heat temperature on the structures and digestibility of corn starch-chlorogenic acid complexes[J]. Journal of Light Industry, 2024, 39(4): 34-41. doi: 10.12187/2024.04.005
Citation: TANG Yanhong, LI Shujun, ZHANG Yiping, et al. Effect of heat temperature on the structures and digestibility of corn starch-chlorogenic acid complexes[J]. Journal of Light Industry, 2024, 39(4): 34-41. doi: 10.12187/2024.04.005

水热处理温度对玉米淀粉-绿原酸复合物结构及消化性能的影响

    作者简介:唐艳红(1977—),女,河南省漯河市人,漯河食品工程职业大学副教授,主要研究方向为食品加工与食品安全检测。E-mail:tyh_2022@126.com
  • 1. 漯河食品工程职业大学 食品检测系, 河南 漯河 462021;
  • 2. 河南师范大学 生命科学学院/功能微生物绿色转化技术河南省工程实验室, 河南 新乡 453007
基金项目:  河南师范大学博士科研启动基金项目(5101049170832)。国家自然科学基金项目(32272432)河南师范大学博士后基金项目(5101049470223)

摘要: 分别在不同水热处理温度(60 ℃、70 ℃、80 ℃和90 ℃)下制备玉米淀粉-绿原酸复合物,并通过其绿原酸含量、复合指数(CI)、晶体结构、体外消化性能等 探究水热处理温度对玉米淀粉-绿原酸复合物结构及消化性能的影响。结果表明:随着水热处理温度的升高,玉米淀粉-绿原酸复合物中的CI逐渐由4.27%增加至10.65%,绿原酸含量先增加后减少,80 ℃下制备的玉米淀粉-绿原酸复合物所结合的绿原酸含量最多(6.13 mg/g),而过多的绿原酸虽能促进玉米淀粉双螺旋的形成,但会阻碍玉米淀粉重新形成有序的晶体结构;玉米淀粉-绿原酸复合物结构随水热处理温度升高而发生的变化会导致其糊化稳定性升高和抗消化性能增强,抗消化淀粉(RS)含量由20.49%增加到30.69%。因此,通过控制水热处理温度,可调节玉米淀粉与绿原酸之间的相互作用,进而调控玉米淀粉的消化性能。

English Abstract

参考文献 (34) 相关文章 (2)

目录

/

返回文章