基于矢功率谱和D-S证据理论分层融合的旋转机械故障诊断方法
A rotating machinery fault diagnosis method based on fusing vector power spectrum and D-S evidence theory
-
摘要: 提出基于矢功率谱和D-S证据理论分层融合的旋转机械故障诊断方法,该方法把转子的2个截面信息分别以矢功率谱进行数据层融合,提取矢功率谱的特征输入到径向基概率神经网络分类器进行故障识别,最后把两截面诊断结果输入D-S证据理论融合中心进行决策层融合.实验结果表明,该方法可降低故障诊断的不确定性,并提高故障决策准确率.Abstract: A rotating machinery fault diagnosis method based on fusing vector power spectrum and D-S evidence theory was presented.The method was that two section information was fused respectively in data layer by vector power spectrum,and then the characteristics which were extracted from the vector power spectrum were input to the basis probabilistic neural network classifier for fault identification,and finally,the two-section diagnosis results were entered into D-S evidence theory for decision level fusion.The experi-ment results showed that the method reduces the diagnostic uncertainty and had high correct recognition rate.
-
-
[1]
陈先利,韩捷.全矢力谱及其在旋转机械故障诊断中的应用研究[J].机床与液压,2008,36(4):202.
-
[2]
李志农,韩捷.机械故障诊断矢功率谱-支持向量机识别方法研究[J].计算机工程与应用,2007,43(8):214.
-
[3]
周宇,韩捷,李志农.基于矢Wigner分布的旋转机械故障诊断方法的研究[J].矿山机械,2007(4):102.
-
[4]
吴胜强,姜万录.基于证据理论多源多特征融合的柱塞泵故障诊断方法[J].中国工程机械学报,2011,9(1):98.
-
[5]
杨春燕,丁静.基于全矢谱和径向基概率神经网络的旋转机械故障诊断方法研究[J].现代制造工程,2010(1):141.
-
[6]
温熙森.模式识别与状态监控[M].北京:科学出版社,2007.
-
[1]
计量
- PDF下载量: 28
- 文章访问数: 725
- 引证文献数: 0