JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

5种新疆特色植物色素的理化特性及其降解动力学研究

宋丽军 龙勇益 李中旭 刘世琦 张丽 孙江怡

宋丽军, 龙勇益, 李中旭, 等. 5种新疆特色植物色素的理化特性及其降解动力学研究[J]. 轻工学报, 2023, 38(3): 1-10. doi: 10.12187/2023.03.001
引用本文: 宋丽军, 龙勇益, 李中旭, 等. 5种新疆特色植物色素的理化特性及其降解动力学研究[J]. 轻工学报, 2023, 38(3): 1-10. doi: 10.12187/2023.03.001
SONG Lijun, LONG Yongyi, LI Zhongxu, et al. Physicochemical properties and degradation kinetics of five Xinjiang characteristic plant pigments[J]. Journal of Light Industry, 2023, 38(3): 1-10. doi: 10.12187/2023.03.001
Citation: SONG Lijun, LONG Yongyi, LI Zhongxu, et al. Physicochemical properties and degradation kinetics of five Xinjiang characteristic plant pigments[J]. Journal of Light Industry, 2023, 38(3): 1-10. doi: 10.12187/2023.03.001

5种新疆特色植物色素的理化特性及其降解动力学研究

    作者简介: 宋丽军(1982-),男,河北省保定市人,河北科技师范学院副教授,博士,主要研究方向为农产品精深加工。E-mail:slj176@163.com;
  • 基金项目: 河北科技师范学院科学研究基金资助项目(2023YB020)
    中央引导地方专项资金项目(兵财教2020-23号)
    广西科技师范学院科研基金项目(GXKS2022QN003)

  • 中图分类号: TS201.4

Physicochemical properties and degradation kinetics of five Xinjiang characteristic plant pigments

  • Received Date: 2022-12-17
    Accepted Date: 2023-02-17

    CLC number: TS201.4

  • 摘要: 对提取自5种新疆特色植物的花青素类色素进行理化特性、抗氧化活性和降解动力学研究,结果表明:不同色素提取物的颜色响应差异显著(P<0.05);黑枸杞色素(BWP)含有5种单体化合物,以锦葵素3-O-葡萄糖苷含量最高(23.18 μg/g DW);桑葚色素(MMP)含有4种单体化合物,以矢车菊素3-O-半乳糖苷含量最高(300.87 μg/g DW);玫瑰花色素(RFP)含有7种单体化合物,以飞燕草素3-O-葡萄糖苷含量最高(144.34 μg/g DW);葡萄皮色素(GPP)含有7种单体化合物,以飞燕草素3-O-葡萄糖苷含量最高(116.45 μg/g DW);紫苏叶色素(PLP)含有3种单体化合物,以矢车菊素含量最高(144.10 μg/g DW)。其中,GPP耐热性最好,降解初始温度为165.71℃。不同色素提取物热降解过程均符合一级反应动力学模型;当pH值为3.0时,PLP最稳定,活化能(Ea)为22.539 kJ/mol;当pH值为7.0时,RFP最稳定,Ea为13.851 kJ/mol。相关性分析表明色素提取物中花青素的含量与其抗氧化活性有显著相关性(P<0.05);RFP的体外抗氧化活性最强,其IC50DPPHIC50ABTS分别为7.32 μg/mL和71.50 μg/mL,总抗氧化活性(T-AOC)为4 073.00 U/g DW。
    1. [1]

      HOU Z H,QIN P Y,ZHANG Y,et al.Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics[J].Food Research International,2013,50(2):691-697.

    2. [2]

      CHIKARA N,KUSHWAHA K,SHARMA P,et al.Bioactive compounds of beetroot and utilization in food processing industry:A critical review[J].Food Chemistry,2019,272:192-200.

    3. [3]

      徐春明,李丹,王英英,等.食品色素的生物合成研究进展[J].中国食品学报,2014,14(2):225-233.

    4. [4]

      JOHNSON J B,EL ORCHE A,NAIKER M.Prediction of anthocyanin content and variety in plum extracts using ATR-FTIR spectroscopy and chemometrics[J].Vibrational Spectroscopy,2022,121:1-7.

    5. [5]

      王天琦,马兆成,吴军民,等.黑果枸杞中花色苷的高效液相色谱分析研究[J].分析科学学报,2020,36(4):465-470.

    6. [6]

      ZHAO J G,YAN Q Q,LU L Z,et al.In vivo antioxidant,hypoglycemic,and anti-tumor activities of anthocyanin extracts from purple sweet potato[J].Nutrition Research and Practice,2013,7(5):359-365.

    7. [7]

      KHARADZE M,JAPARIDZE I,KALANDIA A,et al.Anthocyanins and antioxidant activity of red wines made from endemic grape varieties[J].Annals of Agrarian Sciences,2018,16(2):181-184.

    8. [8]

      谭西,王馨悦,周欣,等.不同产地葡萄花青素提取物的HPLC特征图谱构建及其生物活性分析[J].南方农业学报,2018,49(11):2263-2272.

    9. [9]

      刘琴,李敏,胡秋辉.黑米麸皮与紫包菜花青素提取物的组成、抗氧化性与稳定性比较研究[J].食品科学,2012,33(19):113-118.

    10. [10]

      甘小娜,王辉俊,李廷钊,等.黑果枸杞化学成分的UPLC-Triple TOF/MS分析及其总花色苷类含量测定[J].食品科学,2021,42(18):185-190.

    11. [11]

      冯海博,石惠宇,罗财伟,等.花青素的提取分离纯化工艺、生理功能及在动物生产中应用的研究进展[J].饲料研究,2022,45(23):139-143.

    12. [12]

      李煦,白雪晴,刘长霞,等.天然花青素的抗氧化机制及功能活性研究进展[J].食品安全质量检测学报,2021,12(20):8163-8171.

    13. [13]

      LIU P,LI W R,HU Z Z,et al.Isolation, purification, identification,and stability of anthocyanins from Lycium ruthenicum Murr[J].LWT-Food Science and Technology,2020,126:109334.

    14. [14]

      JIANG T,MAO Y,SUI L S,et al.Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH[J].Food Chemistry,2018,274:460-470.

    15. [15]

      XU Y Q,SIMON J E,FERRUZZI M G,et al.Quantification of anthocyanidins in the grapes and grape juice products with acid assisted hydrolysis using LC/MS[J].Journal of Functional Foods,2012,4(4):710-717.

    16. [16]

      SUI X N,BARY S,ZHOU W B.Changes in the color,chemical stability,and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage[J].Food Chemistry,2016,192:516-524.

    17. [17]

      EYARKAI N V,GUPTA R K,KUMAR S,et al.Degradation kinetics of bioactive components, antioxidant activity,colour and textural properties of selected vegetables during blanching[J].Journal of Food Science & Technology,2016,53(7):3073-3082.

    18. [18]

      WANG L F,RHIM J W.Isolation and characterization of melanin from black garlic and sepia ink[J].LWT-Food Science and Technology,2018,99:17-23.

    19. [19]

      汪雪莲,冯慧祥,薛世华,等.绿茶茶末多酚的提取、鉴定及其生物活性研究[J].轻工学报,2022,37(6):58-67.

    20. [20]

      XIANG J L,LI W H,VICTORIA U N,et al.A comparative study of the phenolic compounds and in vitro antioxidant capacity of finger millets from different growing regions in Malawi[J].Journal of Cereal Science,2019,87:143-149.

    21. [21]

      ALIZADEH-SANI M,MOHAMMADIAN E,RHIM J W,et al.pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety[J].Trends in Food Science & Technology,2020,105:93-144.

    22. [22]

      薛宏坤,李鹏程,钟雪,等.高速逆流色谱分离纯化桑葚花色苷及其抗氧化活性[J].食品科学,2020,41(15):96-104.

    23. [23]

      LEE J H,LEE H J,CHOUNG M G.Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrida cv.Noblered)[J].Food Chemistry,2011,129(2):272-278.

    24. [24]

      张玲,徐宗大,汤腾飞,等.‘紫枝’玫瑰(Rosa rugosa ‘Zi zhi’)开花过程花青素相关化合物及代谢途径分析[J].中国农业科学,2015,48(13):2600-2611.

    25. [25]

      薛宏坤,谭佳琪,刘钗,等.‘巨峰’葡萄皮花色苷的分离纯化,结构鉴定及抗肿瘤活性[J].食品科学,2020,41(5):39-48.

    26. [26]

      ZHENG J,DING C X,WANG L S,et al.Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau[J].Food Chemistry,2010,126(3):859-865.

    27. [27]

      ANTONELLA S,DAVIDE B,ERSILIA B,et al.Chemistry,pharmacology and health benefits of anthocyanins[J].Phytotherapy Research,2016,30(8):1265-1286.

    28. [28]

      郭思文.腊八蒜黄色素的分离鉴定、稳定性分析及细胞转运机制研究[D].沈阳:沈阳农业大学,2019:21-26.

    29. [29]

      CAI X R,DU X F,CUI D M,et al.Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation[J].Food Hydrocolloids,2019,91:238-245.

    30. [30]

      PRIETTO L,MIRAPALHETE T C,PINTO V Z,et al.pH-sensitive films containing anthocyanins extracted from the black bean seed coat and red cabbage[J].LWT-Food Science and Technology,2017,80:492-500.

    31. [31]

      徐媛,潘思轶.红葡萄柚番茄红素和色泽热降解动力学及降解机制[J].食品科学,2017,38(11):81-88.

    32. [32]

      王丹,马越,张超,等.紫玉米苞叶花色苷的纯化鉴定及热稳定性分析[J].食品工业科技,2013,34(3):77-80.

    33. [33]

      SHIMIZU T,ICHI T,IWABUCHI H,et al.Structure of diacylated anthocyanins from red radish (Raphanus sativus L.)[J].Food Chemistry,1996,90(3):5-9.

    34. [34]

      曹少谦,刘亮,张超,等.桑葚花色苷的分离纯化及其热降解动力学研究[J].中国食品学报,2015,15(5):54-62.

    35. [35]

      PIGA A,DEL CARO D A,PINNA I,et al.Anthocyanin and color evolution in naturally black table olives during anaerobic processing[J].LWT-Food Science and Technology,2005,38(4):425-429.

    36. [36]

      LI J,LI X D,ZHANG Y,et al.Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices[J].Food Chemistry,2013,136(3/4):1429-1434.

    37. [37]

      YANG Z D,ZHAI W W.Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.)[J].Innovative Food Science and Emerging Technologies,2009,11(1):169-176.

    38. [38]

      PERON D V,FRAGA S,ANTELO F.Thermal degradation kinetics of anthocyanins extracted from jucara (Euterpe edulis Martius) and “Italia” grapes (Vitis vinifera L.), and the effect of heating on the antioxidant capacity[J].Food Chemistry,2017,232:836-840.

    39. [39]

      ZACHARY T B,REEMA G,SAMANTHA M R,et al.Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols[J].Free Radical Biology and Medicine,2018,120:72-79.

    1. [1]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 0(0): -.

    2. [2]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 39(5): 29-39. doi: 10.12187/2024.05.004

    3. [3]

      贾尚羲张怡雪石盼盼王昱李可 . 不同时长超声波处理对鹰嘴豆分离蛋白乳化液稳定性的影响. 轻工学报, 2024, 39(5): 40-49. doi: 10.12187/2024.05.005

    4. [4]

      张改红许航杜帅徐月莹石栋栋薛晶晶尚紫博毛多斌 . 麦芽酚-β-D-葡萄糖苷的稳定性及其在卷烟加香中的应用. 轻工学报, 2024, 39(5): 102-108. doi: 10.12187/2024.05.012

    5. [5]

      胡新楠朱成凯胡中泽纪执立金伟平郭城沈汪洋 . 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响. 轻工学报, 2024, 0(0): -.

    6. [6]

      尹思睿冯娇杨晓宇李良 . 植物蛋白复配对植物肉品质的影响. 轻工学报, 2024, 39(5): 18-28. doi: 10.12187/2024.05.003

    7. [7]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 0(0): -.

    8. [8]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 39(5): 9-17. doi: 10.12187/2024.05.002

    9. [9]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

  • 加载中
计量
  • PDF下载量:  33
  • 文章访问数:  2719
  • 引证文献数: 0
文章相关
  • 收稿日期:  2022-12-17
  • 修回日期:  2023-02-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
宋丽军, 龙勇益, 李中旭, 等. 5种新疆特色植物色素的理化特性及其降解动力学研究[J]. 轻工学报, 2023, 38(3): 1-10. doi: 10.12187/2023.03.001
引用本文: 宋丽军, 龙勇益, 李中旭, 等. 5种新疆特色植物色素的理化特性及其降解动力学研究[J]. 轻工学报, 2023, 38(3): 1-10. doi: 10.12187/2023.03.001
SONG Lijun, LONG Yongyi, LI Zhongxu, et al. Physicochemical properties and degradation kinetics of five Xinjiang characteristic plant pigments[J]. Journal of Light Industry, 2023, 38(3): 1-10. doi: 10.12187/2023.03.001
Citation: SONG Lijun, LONG Yongyi, LI Zhongxu, et al. Physicochemical properties and degradation kinetics of five Xinjiang characteristic plant pigments[J]. Journal of Light Industry, 2023, 38(3): 1-10. doi: 10.12187/2023.03.001

5种新疆特色植物色素的理化特性及其降解动力学研究

    作者简介:宋丽军(1982-),男,河北省保定市人,河北科技师范学院副教授,博士,主要研究方向为农产品精深加工。E-mail:slj176@163.com
  • 1. 河北科技师范学院 食品科技学院, 河北 秦皇岛 066600;
  • 2. 广西科技师范学院 食品与生化工程学院, 广西 来宾 546199;
  • 3. 塔里木大学 食品科学与工程学院, 新疆 阿拉尔 843300
基金项目:  河北科技师范学院科学研究基金资助项目(2023YB020)中央引导地方专项资金项目(兵财教2020-23号)广西科技师范学院科研基金项目(GXKS2022QN003)

摘要: 对提取自5种新疆特色植物的花青素类色素进行理化特性、抗氧化活性和降解动力学研究,结果表明:不同色素提取物的颜色响应差异显著(P<0.05);黑枸杞色素(BWP)含有5种单体化合物,以锦葵素3-O-葡萄糖苷含量最高(23.18 μg/g DW);桑葚色素(MMP)含有4种单体化合物,以矢车菊素3-O-半乳糖苷含量最高(300.87 μg/g DW);玫瑰花色素(RFP)含有7种单体化合物,以飞燕草素3-O-葡萄糖苷含量最高(144.34 μg/g DW);葡萄皮色素(GPP)含有7种单体化合物,以飞燕草素3-O-葡萄糖苷含量最高(116.45 μg/g DW);紫苏叶色素(PLP)含有3种单体化合物,以矢车菊素含量最高(144.10 μg/g DW)。其中,GPP耐热性最好,降解初始温度为165.71℃。不同色素提取物热降解过程均符合一级反应动力学模型;当pH值为3.0时,PLP最稳定,活化能(Ea)为22.539 kJ/mol;当pH值为7.0时,RFP最稳定,Ea为13.851 kJ/mol。相关性分析表明色素提取物中花青素的含量与其抗氧化活性有显著相关性(P<0.05);RFP的体外抗氧化活性最强,其IC50DPPHIC50ABTS分别为7.32 μg/mL和71.50 μg/mL,总抗氧化活性(T-AOC)为4 073.00 U/g DW。

English Abstract

参考文献 (39) 相关文章 (9)

目录

/

返回文章