分数阶复杂网络系统的混沌同步研究
Chaos synchronization of fractional order complex network system
-
摘要: 基于Lyapunov稳定性理论和分数阶微积分相关理论,采用驱动-响应法,研究了一类分数阶复杂网络系统的混沌同步问题,给出了分数阶复杂网络及分数阶时滞复杂网络系统实现混沌同步的充分性条件.这表明在一定条件下,主从系统可以实现混沌同步.仿真结果表明了该方法的正确性.Abstract: The chaos synchronization problem of fractional order complex network system was studied through drive-responsive approach on lyapunov stability theory and fractional order calculus relevant theory.The sufficient conditions for fractional order complex network and its time-delayed system realizing chaos synchronization were given, which suggested that master-slave system could realize the chaos synchronization under certain conditions.Numerical simulations example of chaotic system verified the correctness of the proposed method.
-
-
[1]
徐争辉,刘友金,谭文,等.一个对称分数阶经济系统混沌特性分析[J].系统工程理论与实践,2014,34(5):1237.
-
[2]
郝建红,宾虹,姜苏娜,等.分数阶线性系统稳定理论在混沌同步中的简单应用[J].河北师范大学学报:自然版,2014,38(5):469.
-
[3]
潘光,魏静.一种分数阶混沌系统同步的只适应滑模控制器设计[J].物理学报,2015,64(4):5051.
-
[4]
张云雷,吴超然.基于反馈控制的分数阶时滞神经网络的同步[J].重庆工商大学学报:自然版,2014,31(12):49.
-
[5]
韩敏,张雅美,张檬.具有双重时滞的时变耦合复杂网络的牵制外同步[J].物理学报,2015,64(7):5061.
-
[6]
Lü L,Li G,Guo Y.Generalized chaos synchronization of a weighted complex network with different nodes[J].Cjin Phys B,2010,19(8):5071.
-
[7]
Mei J,Jiang M H,Wang J.Finite-time structure identification and synchronization of drive-response systems with uncertain parameter[J].Commun Nonlinear Sci Numer Simulat,2013(18):999.
-
[8]
刘恒,李生刚,孙业国,等.带有未知非对称控制增益的不确定分数阶混沌系统的自适应模糊同步控制[J].物理学报,2015,64(7):5031.
-
[9]
卫一恒,朱敏,彭程,等.不确定分数阶时滞系统的鲁棒稳定性判定准则[J].控制与决策,2014,29(3):511.
-
[10]
余名哲,张友安.一类不确定分数阶混沌系统的滑模自适应同步[J].北京航空航天大学学报,2014,40(9):1276.
-
[11]
钟启龙,邵永辉,郑永爱.基于TS模型的分数阶混沌系统同步[J].扬州大学学报:自然版,2012,17(2):46.
-
[12]
Podlubny.Fractional Differential Equation[M].San Diego,CA:Academic Press,1999.
-
[13]
胡建兵,赵灵冬.分数阶系统稳定性理论与控制研究[J].物理学报,2013,62(24):5041.
-
[14]
赵灵冬.分数阶非线性时滞系统的稳定性理论及控制研究[D].上海:东华大学,2014.
-
[1]
计量
- PDF下载量: 30
- 文章访问数: 1785
- 引证文献数: 0