JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

换热器微通道内纵向涡流发生器的层流流动及换热特性研究

李恒 刘焕玲 王鹏 贾梦川 安小康

李恒, 刘焕玲, 王鹏, 等. 换热器微通道内纵向涡流发生器的层流流动及换热特性研究[J]. 轻工学报, 2018, 33(3): 82-93. doi: 10.3969/j.issn.2096-1553.2018.03.011
引用本文: 李恒, 刘焕玲, 王鹏, 等. 换热器微通道内纵向涡流发生器的层流流动及换热特性研究[J]. 轻工学报, 2018, 33(3): 82-93. doi: 10.3969/j.issn.2096-1553.2018.03.011
LI Heng, LIU Huanling, WANG Peng, et al. Study on laminar flow and heat transfer characteristics of longitudinal vortex generators in heat exchanger microchannel[J]. Journal of Light Industry, 2018, 33(3): 82-93. doi: 10.3969/j.issn.2096-1553.2018.03.011
Citation: LI Heng, LIU Huanling, WANG Peng, et al. Study on laminar flow and heat transfer characteristics of longitudinal vortex generators in heat exchanger microchannel[J]. Journal of Light Industry, 2018, 33(3): 82-93. doi: 10.3969/j.issn.2096-1553.2018.03.011

换热器微通道内纵向涡流发生器的层流流动及换热特性研究

  • 基金项目: 中央高校基本科研业务费项目(7214418102,72134181)

  • 中图分类号: TK124;TS04

Study on laminar flow and heat transfer characteristics of longitudinal vortex generators in heat exchanger microchannel

  • Received Date: 2017-07-06
    Available Online: 2018-05-15

    CLC number: TK124;TS04

  • 摘要: 采用Fluent软件研究了当雷诺数为200~1100时,换热器微通道内固定间距下4种不同布置形式的矩形翼对流体层流流动和换热的影响,并与光滑微通道进行了对比.结果表明,最佳布置形式为两对矩形翼呈括弧形布置,且当Re=1100时,其Nu比光滑微通道提高了39.7%.在此配置下,不同间距矩形翼对流体层流流动和换热的影响规律为: PEC随着间距的增加先增大后减小,最佳间距为g1=g2=4H时,PEC最大为0.62.
    1. [1]

      TUCKERMAN D B,PEASE R.High-performance heat sinking for VLSI[J].IEEE Electron Device Letters,1981,2(5):126.

    2. [2]

      JOHNSON T R,JOUBERT P N.The influence of vortex generators on the drag and heat transfer from a circular cylinder normal to an airstream[J].Journal of Heat Transfer,1969,91(1):91.

    3. [3]

      AHMED H,MOHAMMED H A,YUSOFF M.An overview on heat transfer augmentation using vortex generators and nanofluids:Approaches and applications[J].Renewable and Sustainable Energy Reviews,2012,16(8):5951.

    4. [4]

      FIEBIG M,KALLWEIT P,MITRA N,et al.Heat transfer enhancement and drag by longitudinal vortex generators in channel flow[J].Experimental Thermal and Fluid Science,1991,4(1):103.

    5. [5]

      WU J M,TAO W Q.Effect of longitudinal vortex generator on heat transfer in rectangular channels[J].Applied Thermal Engineering,2012,37:67.

    6. [6]

      LIU C,TENG J T,CHU J C,et al.Experimental investigations on liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators[J].International Journal of Heat and Mass Transfer,2011,54(13):3069.

    7. [7]

      CHEN C,TENG J T,CHENG C H,et al.A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators[J].International Journal of Heat and Mass Transfer,2014,69:203.

    8. [8]

      KIM B.An experimental study on fully developed laminar flow and heat transfer in rectangular microchannels[J].International Journal of Heat and Fluid Flow,2016,62:224.

    9. [9]

      MIRZAEE H,DADVAND A,MIRZAEE I,et al.Heat transfer enhancement in microchannels using an elastic vortex generator[J].Journal of Enhanced Heat Transfer,2012,19(3):199.

    10. [10]

      EBRAHIMI A,ROOHI E,KHERADMAND S.Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators[J].Applied Thermal Engineering,2015,78:576.

    11. [11]

      DATTA A,SANYAL D,DAS A K.Numerical investigation of heat transfer in microchannel using inclined longitudinal vortex generator[J].Applied Thermal Engineering,2016,108:1008.

    12. [12]

      SABAGHAN A,EDALATPOUR M,MOGHADAM M C,et al.Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators:Two-phase numerical simulation[J].Applied Thermal Engineering,2016,100:179.

    13. [13]

      LI P,ZHANG D,XIE Y.Heat transfer and flow analysis of Al2O3-water nanofluids in microchannel with dimple and protrusion[J].International Journal of Heat and Mass Transfer,2014,73:456.

    14. [14]

      GUO J F,XU M T,CHENG L.Second law analysis of curved rectangular channel[J].International Journal of Thermal Science,2011,50:760.

    1. [1]

      章存勇庄海锋时雅琪邹鹏丁乃红纵坤贾良元郭东锋 . 国内外雪茄烟叶热解产物差异性研究. 轻工学报, 2024, 0(0): -.

    2. [2]

      章存勇庄海锋时雅琪邹鹏丁乃红纵坤贾良元郭东锋 . 国内外雪茄烟叶热解产物差异性研究. 轻工学报, 2024, 39(5): 118-126. doi: 10.12187/2024.05.014

    3. [3]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 0(0): -.

    4. [4]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 39(5): 9-17. doi: 10.12187/2024.05.002

    5. [5]

      胡新楠朱成凯胡中泽纪执立金伟平郭城沈汪洋 . 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响. 轻工学报, 2024, 0(0): -.

  • 加载中
计量
  • PDF下载量:  24
  • 文章访问数:  1102
  • 引证文献数: 0
文章相关
  • 收稿日期:  2017-07-06
  • 刊出日期:  2018-05-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
李恒, 刘焕玲, 王鹏, 等. 换热器微通道内纵向涡流发生器的层流流动及换热特性研究[J]. 轻工学报, 2018, 33(3): 82-93. doi: 10.3969/j.issn.2096-1553.2018.03.011
引用本文: 李恒, 刘焕玲, 王鹏, 等. 换热器微通道内纵向涡流发生器的层流流动及换热特性研究[J]. 轻工学报, 2018, 33(3): 82-93. doi: 10.3969/j.issn.2096-1553.2018.03.011
LI Heng, LIU Huanling, WANG Peng, et al. Study on laminar flow and heat transfer characteristics of longitudinal vortex generators in heat exchanger microchannel[J]. Journal of Light Industry, 2018, 33(3): 82-93. doi: 10.3969/j.issn.2096-1553.2018.03.011
Citation: LI Heng, LIU Huanling, WANG Peng, et al. Study on laminar flow and heat transfer characteristics of longitudinal vortex generators in heat exchanger microchannel[J]. Journal of Light Industry, 2018, 33(3): 82-93. doi: 10.3969/j.issn.2096-1553.2018.03.011

换热器微通道内纵向涡流发生器的层流流动及换热特性研究

  • 西安电子科技大学 机电工程学院, 陕西 西安 710000
基金项目:  中央高校基本科研业务费项目(7214418102,72134181)

摘要: 采用Fluent软件研究了当雷诺数为200~1100时,换热器微通道内固定间距下4种不同布置形式的矩形翼对流体层流流动和换热的影响,并与光滑微通道进行了对比.结果表明,最佳布置形式为两对矩形翼呈括弧形布置,且当Re=1100时,其Nu比光滑微通道提高了39.7%.在此配置下,不同间距矩形翼对流体层流流动和换热的影响规律为: PEC随着间距的增加先增大后减小,最佳间距为g1=g2=4H时,PEC最大为0.62.

English Abstract

参考文献 (14) 相关文章 (5)

目录

/

返回文章