JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

生物标志物检测方法的研究进展

武丰龙 崔艳英 张志锋 王丹丹

武丰龙, 崔艳英, 张志锋, 等. 生物标志物检测方法的研究进展[J]. 轻工学报, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006
引用本文: 武丰龙, 崔艳英, 张志锋, 等. 生物标志物检测方法的研究进展[J]. 轻工学报, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006
WU Fenglong, CUI Yanying, ZHANG Zhifeng and et al. Research progress of methods for biomarker detection[J]. Journal of Light Industry, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006
Citation: WU Fenglong, CUI Yanying, ZHANG Zhifeng and et al. Research progress of methods for biomarker detection[J]. Journal of Light Industry, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006

生物标志物检测方法的研究进展

    作者简介: 武丰龙(1976-),男,河南省南阳市人,郑州轻工业大学讲师,主要研究方向为智能信息检测与信息计算。E-mail:wufenglong1112@163.com;
  • 基金项目: 国家自然科学基金面上基金项目(61975187)

  • 中图分类号: TS207.4;R318

Research progress of methods for biomarker detection

  • Received Date: 2021-06-11
    Accepted Date: 2022-01-20

    CLC number: TS207.4;R318

  • 摘要: 综述了基于遗传物质(RNA和DNA)、免疫学(抗原/抗体)及结合微芯片技术的生物标志物检测方法的应用研究进展,指出:基于遗传物质的检测方法直接作用于靶标物质,准确性和灵敏度高,但其检测步骤繁多,对检测环境要求高;基于免疫学的检测方法操作简单、便携性高、能实现即时检测但准确性稍低,适用于快速、大规模的病毒筛查;结合微芯片技术的检测方法更加多元化,并能在短时间内实现靶标物质的检测,精确性、自动化程度得到提高,在病毒筛查、疾病诊断等方面表现出巨大的发展潜力。未来生物标志物检测技术可就优化免疫催化反应物、加大核酸提取物纯化程度、提高检测设备自动化程度、构建多重检测系统、实现检测设备微型化及检测信息可视化等方面开展进一步研究,以提高检测准确性、设备便携性,从而实现该技术的持续发展。
    1. [1]

      XIE V.Effective biomarker measurement is key for biotherapeutic development[J].Bioanalysis,2022,14(8):451-453.

    2. [2]

      JAYANTHI V S A,DAS A B,SAXEBA U.Recent advances in biosensor development for the detection of cancer biomarkers[J].Biosensors and Bioelectronics,2017,91:15-23.

    3. [3]

      HUANG L Y,WU H W,HSIEH K,et al.Microfluidic platforms for discovery and detection of molecular biomarkers[J].Microfluidics and Nanofluidics,2014,16(5):941-963.

    4. [4]

      LIU R T,YE X Y,CUI T H.Recent progress of biomarker detection sensors[J].Research,2020,2020:1-26.

    5. [5]

      CHAN J F W,YUAN S F,KOK K H,et al.A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission:A study of a family cluster[J].Lancet,2020,395(10223):514-523.

    6. [6]

      ORAN D P,TOPOL E J.Prevalence of asymptomatic SARS-CoV-2 infection:A narrative review[J].Ann Intern Med,2020,173(5):362-367.

    7. [7]

      TANACAN A,EROL S,TURGAY B,et al.The rate of SARS-CoV-2 positivity in asymptomatic pregnant women admitted to hospital for delivery:Experience of a pandemic center in Turkey[J].European Journal of Obstetrics&Gynecology and Reproductive Biology,2020,253:31-34.

    8. [8]

      CHEN Z,WU Y Q,CHEN H,et al.Design and application of automatic and rapid nucleic acid extractor using magnetic nanoparticles[J].Journal of Nanoscience and Nanotechnology,2016,16(7):6998-7004.

    9. [9]

      TANG C I,HE Z Y,LIU H M,et al.Application of magnetic nanoparticles in nucleic acid detection[J].Journal of Nanobiotechnology,2020,18:1-19.

    10. [10]

      AI T,YANG Z L,HOU H Y,et al.Correlation of chest CT and RT-PCR testing for coronavirus disease 2019(COVID-19) in China:A report of 1014 cases[J].Radiology,2020,296(2):E32-E40.

    11. [11]

      何久香,丁晓艳,周晓杨,等.一种快速灵敏的非洲猪瘟病毒荧光定量PCR检测方法的建立[J].中国病原生物学杂志,2022,17(5):497-501
      ,508.

    12. [12]

      KILANI M M,ODEH M M,SHALABI M,et al.Clinical and laboratory characteristics of SARS-CoV2-infected paediatric patients in Jordan:Serial RT-PCR testing until discharge[J].Paediatrics and International Child Health,2021,41(1):83-92.

    13. [13]

      CORMAN V M,LANDT O,KAISER M,et al.Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR[J].Eurosurveillance,2020,25(3):2000045.

    14. [14]

      钟慧钰,赵珍珍,宋兴勃,等.新型冠状病毒核酸临床检测要点及经验[J].国际检验医学杂志,2020,41(5):523-526.

    15. [15]

      FALZONE L,MUSSO N,GATTUSO G,et al.Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection[J].International Journal of Molecular Medicine,2020,46(3):957-964.

    16. [16]

      CHEN J Q,HEALEY S,REGAN P,et al.PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources[J].Food Science and Human Wellness,2017,6(2):39-59.

    17. [17]

      苗小草,陈万义,施春雷,等.乳品中4种常见致病菌多重PCR检测方法的建立[J].河南工业大学学报(自然科学版),2018,39(1
      ):63-71.

    18. [18]

      NOTOMI T,MORI Y,TOMITA N,et al.Loop-mediated isothermal amplification (LAMP):Principle, features, and future prospects[J].Journal of Microbiology,2015,53(1):1-5.

    19. [19]

      OH S J,PARK B H,JUNG J H,et al.Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection[J].Biosensors and Bioelectronics,2016,75:293-300.

    20. [20]

      BESUSCHIO S A,LLANO MURCIA M,BENATAR A F,et al.Analytical sensitivity and specificity of a loop-mediated isothermal amplification (LAMP) kit prototype for detection of Trypanosoma cruzi DNA in human blood samples[J].PLoS Neglected Tropical Diseases,2017,11(7):e0005779.

    21. [21]

      BASU A,ZINGER T,INGLIMA K,et al.Performance of Abbott ID Now COVID-19 rapid nucleic acid amplification test using nasopharyngeal swabs transported in viral transport media and dry nasal swabs in a New York City academic institution[J].Journal of Clinical Microbiology,2020,58(8):e01136-20.

    22. [22]

      岳晓红,宋银森,葛丽丽,等.实时荧光核酸恒温扩增检测技术、胶体金法、酶联免疫法在检测儿童肺炎支原体感染中的应用比较[J].中国卫生检验杂志,2018,28(16):1965-1969.

    23. [23]

      LI J Q,SUN L,WU X R,et al.Early diagnosis of mycoplasma pneumonia in children:Simultaneous amplification and testing (SAT) is the key[J].Frontiers in Pediatrics,2019,7:441.

    24. [24]

      TANG M Y,WANG D,TONG X,et al.Comparison of different detection methods for Mycoplasma pneumonia infection in children with community-acquired pneumonia[J]. BMC Pediatrics,2021,21(1):1-8.

    25. [25]

      刘宁,王超,王芳芳,等.DNA分析技术在单基因遗传病产前诊断中的研究进展[J].中国计划生育学杂志,2021,29(9):2007-2012.

    26. [26]

      WANG M,FU A S,HU B,et al.Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses[J].Small,2020,16(32):2002169.

    27. [27]

      TAFESS K,NG T T L,LAO H Y,et al.Targeted-sequencing workflows for comprehensive drug resistance profiling of Mycobacterium tuberculosis cultures using two commercial sequencing platforms:Comparison of analytical and diagnostic performance,turnaround time,and cost[J].Clinical Chemistry,2020,66(6):809-820.

    28. [28]

      LIU R,FU A S,DENG Z X,et al.Promising methods for detection of novel coronavirus SARS-CoV-2[J].View,2020,1(1):e4.

    29. [29]

      ABUDAYYEH O O,GOOTENBERG J S,KONERMANN S,et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science,2016,353(6299):aaf5573.

    30. [30]

      FAREH M,ZHAO W,HU W X,et al.Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance[J].Nature Communications,2021,12:4270.

    31. [31]

      BOSE S K,WHITE B M,KASHYAP M V,et al.In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease[J].Nature Communications,2021,12:4291.

    32. [32]

      朱珠,陈安林,彭丹,等.布鲁氏菌病的诊断及治疗方法研究进展[J].山东医药,2017,57(7):104-107.

    33. [33]

      AMANAT F,STADLBAUER D,STROHMEIER S,et al.A serological assay to detect SARS-CoV-2 seroconversion in humans[J].Nature Medicine,2020,26(7):1033-1036.

    34. [34]

      XIANG T X,JIANG Z,ZHENG J,et al.A novel double antibody sandwich-lateral flow immunoassay for the rapid and simple detection of hepatitis C virus[J].International Journal of Molecular Medicine,2012,30(5):1041-1047.

    35. [35]

      MADIYA M,SAGAR S,VISHWANATH S,et al.Comparing assay performance of ELISA and chemiluminescence immunoassay in detecting antibodies to hepatitis B surface antigen[J].Journal of Clinical and Diagnostic Research,2016,10(11):DC22-DC25.

    36. [36]

      AFZAL N,TARIQ N,RAZA S,et al.Diagnostic accuracy of electro-chemiluminescence immunoassay anti-SARS-CoV-2 serological test[J].Cureus,2021,13(1):e12588.

    37. [37]

      CHANG L,ZHAO J P,GUO F,et al.Comparative evaluation and measure of accuracy of ELISAs, CLIAs, and ECLIAs for the detection of HIV infection among blood donors in China[J].The Canadian Journal of Infectious Diseases&Medical Microbiology,2020,2020:2164685.

    38. [38]

      PAN D,FANG Z Z,YANG E L,et al.Facile preparation of WO3-x dots with remarkably low toxicity and uncompromised activity as co-reactants for clinical diagnosis by electrochemiluminescence[J].Angewandte Chemie International Edition,2020,59(38):16747-16754.

    39. [39]

      NIE Y M,YUAN X D,ZHANG P,et al.Versatile and ultrasensitive electrochemiluminescence biosensor for biomarker detection based on nonenzymatic amplification and aptamer-triggered emitter release[J].Analytical Chemistry,2019,91(5):3452-3458.

    40. [40]

      张来宾,张珊珊,杨文,等.胶体金免疫层析技术在食品检测中的应用[J].吉林农业,2018(8):88.

    41. [41]

      JU Y,HAO H J,XIONG G H,et al.Development of colloidal gold-based immunochromatographic assay for rapid detection of Streptococcus suis serotype 2[J].Veterinary Immunology&Immunopathology,2010,133(2/4):207-211.

    42. [42]

      张稳健,吕欣,黄驰,等.胶体金免疫层析法检测新型冠状病毒IgM/IgG抗体的临床评价与应用[J].病毒学报,2020,36(3):348-354.

    43. [43]

      谢艳君.胶体金试纸条现场可视化检测中药中黄曲霉毒素B1研究[D].长春:吉林农业大学,2016.

    44. [44]

      HUANG Z,HU S,XIONG Y H,et al.Application and development of super paramagnetic nanoparticles in sample pretreatment and immunochromatographic assay[J].TrAC Trends in Analytical Chemistry,2019,114:151-170.

    45. [45]

      DOBSON J.Gene therapy progress and prospects:Magnetic nanoparticle-based gene delivery[J].Gene Therapy,2006,13(4):283.

    46. [46]

      XIA S Q,YU Z B,LIU D F,et al.Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk[J].Food Control,2016,59:507-512.

    47. [47]

      张博.基于磁致荧光淬灭性能的双模态免疫层析检测技术初探[D].天津:天津大学,2018.

    48. [48]

      邵奕霖.磁免疫微流控芯片的研制及其在肺炎链球菌检测中的应用[D].南昌:南昌大学,2018.

    49. [49]

      WIBOWO N A,JUHARNI J,ALFANSURI T,et al.Core-shell Fe3O4@Ag magnetic nanoparticles detection using spin-valve GMR sensing element in the wheatstone bridge circuit[J].Materials Research Express,2020,7(12):126102.

    50. [50]

      LOONG L M,LEE W,QIU X,et al.Flexible MgO barrier magnetic tunnel junctions[J].Advanced Materials,2016,28(25):4983-4990.

    51. [51]

      SUN X C,LEI C,GUO L,et al.Separable detecting of Escherichia coli O157H:H7 by a giant magneto-resistance-based bio-sensing system[J].Sensors and Actuators B-Chemical,2016,234:485-492.

    52. [52]

      SHARMA P P,ALBISETTI E,MASSETTI M,et al.Integrated platform for detecting pathogenic DNA via magnetic tunneling junction-based biosensors[J].Sensors and Actuators B-Chemical,2017,242:280-287.

    53. [53]

      LI L,MAK K Y,ZHOU Y.Detection of HIV-1 antigen based on magnetic tunnel junction sensors[J].Chinese Physics B,2020,29(8):088701.

    54. [54]

      CHOI J,GANI A W,BECHSTEIN D J B,et al.Portable,one-step,and rapid GMR biosensor platform with smartphone interface[J].Biosensors and Bioelectronics,2016,85:1-7.

    55. [55]

      WU K,SU D Q,SAHA R,et al.Magnetic particle spectroscopy-based bioassays:Methods,applications,advances,and future opportunities[J].Journal of Physics D (Applied Physics),2019,52(17):173001.

    56. [56]

      UTKUR M,MUSLU Y,SARITAS E U.Relaxation-based viscosity mapping for magnetic particle imaging[J].Physics in Medicine&Biology,2017,62(9):3422.

    57. [57]

      WU K,LIU J M,SAHA R,et al.Magnetic particle spectroscopy for detection of influenza a virus subtype H1N1[J].ACS Applied Materials&Interfaces,2020,12(12):13686-13697.

    58. [58]

      赵兴一.磁免疫测量机电系统研究与设计[D].武汉:华中科技大学,2019.

    59. [59]

      DASH A,BLASIAK B,TOMANEK B,et al.Validation of Inner, second, and outer sphere contributions to T1 and T2relaxation in Gd3+-based nanoparticles using Eu3+ lifetime decay as a probe[J].The Journal of Physical Chemistry C,2018,122(21):11557-11569.

    60. [60]

      LIONG M,HOANG A H,CHUNG J,et al.Magnetic barcode assay for genetic detection of pathogens[J].Nature Communications,2013,4(1):1-9.

    61. [61]

      KUSUNOKI H,TANAKA T,KOHNO T,et al.NMR characterization of the interaction between Bcl-xL and the BH3-like motif of hepatitis B virus X protein[J].Biochemical and Biophysical Research Communications,2019,518(3):445-450.

    62. [62]

      DAPIAGGI F,PIERACCINI S,POTENZA D,et al.Computer aided design and NMR characterization of an oligopeptide targeting the Ebola virus VP24 protein[J].New Journal of Chemistry,2017,41(11):4308-4315.

    63. [63]

      SAMIEI E,TABRIZIAN M,HOORFAR M.A review of digital microfluidics as portable platforms for lab-on a-chip applications[J].Lab on a Chip,2016,16(13):2376-2396.

    64. [64]

      刘赵淼,杨洋,杜宇,等.微流控液滴技术及其应用的研究进展[J].分析化学,2017,45(2):282-296.

    65. [65]

      朱灿灿.病原体核酸一体化并行检测微流控芯片研究[D].合肥:中国科学技术大学,2019.

    66. [66]

      SAYAD A A,IBRAHIM F,UDDIN S M,et al.A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection[J].Sensors and Actuators B-Chemical,2016,227:600-609.

    67. [67]

      王艺蓓.基于微液滴的球刷-酶信号放大系统及其数字ELISA应用初探[D].上海:上海交通大学,2019.

    68. [68]

      BIAN M M,ZHANG Y,YUAN Y L.Research progress of electrochemical biosensing platform based on microfluidics[J].Journal of Analytical Science,2019,35(5):657-664.

    69. [69]

      FARZBOD A,MOON H,et al.Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform[J].Biosensors&Bioelectronics,2018,106:37-42.

    70. [70]

      PETKOVIC K,METCALFE G,CHEN H,et al.Rapid detection of Hendra virus antibodies:An integrated device with nanoparticle assay and chaotic micromixing[J].Lab on a Chip,2017,17(1):169-177.

    1. [1]

      吴晓东刘畅李俊胡良志贺凌晨袁海霞李强黄锦标 . 基于高光谱检测的烟丝加香均匀性表征方法. 轻工学报, 2024, 39(5): 95-101. doi: 10.12187/2024.05.011

    2. [2]

      李敏贺姗姗杨钰雯 . 改良QuEChERS方法结合超高效液相色谱测定火腿肠中杂环胺类化合物. 轻工学报, 2024, 39(5): 60-70. doi: 10.12187/2024.05.007

    3. [3]

      卢晓波徐海朱俊召张宇谭健高冠男胡军华林龙 . 基于机器视觉的加热卷烟烟支端部质量检测系统设计. 轻工学报, 2024, 0(0): -.

    4. [4]

      张伟伟姬远鹏元春波王君婷齐晓任张卫正李萌饶智 . 基于改进Mask R-CNN模型的粘连烟丝识别方法. 轻工学报, 2024, 39(5): 78-85. doi: 10.12187/2024.05.009

  • 加载中
计量
  • PDF下载量:  107
  • 文章访问数:  5104
  • 引证文献数: 0
文章相关
  • 收稿日期:  2021-06-11
  • 修回日期:  2022-01-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
武丰龙, 崔艳英, 张志锋, 等. 生物标志物检测方法的研究进展[J]. 轻工学报, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006
引用本文: 武丰龙, 崔艳英, 张志锋, 等. 生物标志物检测方法的研究进展[J]. 轻工学报, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006
WU Fenglong, CUI Yanying, ZHANG Zhifeng and et al. Research progress of methods for biomarker detection[J]. Journal of Light Industry, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006
Citation: WU Fenglong, CUI Yanying, ZHANG Zhifeng and et al. Research progress of methods for biomarker detection[J]. Journal of Light Industry, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006

生物标志物检测方法的研究进展

    作者简介:武丰龙(1976-),男,河南省南阳市人,郑州轻工业大学讲师,主要研究方向为智能信息检测与信息计算。E-mail:wufenglong1112@163.com
  • 1. 郑州轻工业大学 软件学院, 河南 郑州 450001;
  • 2. 郑州轻工业大学 计算机与通信工程学院, 河南 郑州 450001
基金项目:  国家自然科学基金面上基金项目(61975187)

摘要: 综述了基于遗传物质(RNA和DNA)、免疫学(抗原/抗体)及结合微芯片技术的生物标志物检测方法的应用研究进展,指出:基于遗传物质的检测方法直接作用于靶标物质,准确性和灵敏度高,但其检测步骤繁多,对检测环境要求高;基于免疫学的检测方法操作简单、便携性高、能实现即时检测但准确性稍低,适用于快速、大规模的病毒筛查;结合微芯片技术的检测方法更加多元化,并能在短时间内实现靶标物质的检测,精确性、自动化程度得到提高,在病毒筛查、疾病诊断等方面表现出巨大的发展潜力。未来生物标志物检测技术可就优化免疫催化反应物、加大核酸提取物纯化程度、提高检测设备自动化程度、构建多重检测系统、实现检测设备微型化及检测信息可视化等方面开展进一步研究,以提高检测准确性、设备便携性,从而实现该技术的持续发展。

English Abstract

参考文献 (70) 相关文章 (4)

目录

/

返回文章