JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

枯草芽孢杆菌甘油激酶编码基因定点突变提升甘油利用水平的研究

王光路 张帆 周忆菲 王梦园 赵金垒 李明笑 杨雪鹏 马歌丽

王光路, 张帆, 周忆菲, 等. 枯草芽孢杆菌甘油激酶编码基因定点突变提升甘油利用水平的研究[J]. 轻工学报, 2020, 35(6): 1-8. doi: 10.12187/2020.06.001
引用本文: 王光路, 张帆, 周忆菲, 等. 枯草芽孢杆菌甘油激酶编码基因定点突变提升甘油利用水平的研究[J]. 轻工学报, 2020, 35(6): 1-8. doi: 10.12187/2020.06.001
WANG Guanglu, ZHANG Fan, ZHOU Yifei, et al. Effect of site-specific mutagenesis of glycerol kinase coding gene on the glycerol utilization of Bacillus subtilis[J]. Journal of Light Industry, 2020, 35(6): 1-8. doi: 10.12187/2020.06.001
Citation: WANG Guanglu, ZHANG Fan, ZHOU Yifei, et al. Effect of site-specific mutagenesis of glycerol kinase coding gene on the glycerol utilization of Bacillus subtilis[J]. Journal of Light Industry, 2020, 35(6): 1-8. doi: 10.12187/2020.06.001

枯草芽孢杆菌甘油激酶编码基因定点突变提升甘油利用水平的研究

    作者简介: 王光路(1986-),男,山东省枣庄市人,郑州轻工业大学讲师,博士,主要研究方向为代谢工程和合成生物学.;
  • 基金项目: 国家自然科学基金联合基金项目(U1904101);河南省科技攻关重点研发与推广专项项目(202102310021,182102310607)

  • 中图分类号: TS201.3;Q789

Effect of site-specific mutagenesis of glycerol kinase coding gene on the glycerol utilization of Bacillus subtilis

  • Received Date: 2020-06-06

    CLC number: TS201.3;Q789

  • 摘要: 采用无痕等位基因置换方法,将枯草芽孢杆菌基因组上的甘油激酶编码基因glpK第270位氨基酸残基M突变为I,构建了突变工程菌株枯草芽孢杆菌M270I,并分析了该突变菌株的生长特性.结果表明:对甘油激酶编码基因glpK进行定点突变可有效提升枯草芽孢杆菌对甘油的利用水平,与出发菌株枯草芽孢杆菌168 Δupp相比,突变菌株枯草芽孢杆菌M270I在M9甘油基本盐液体培养基中的比生长速率提升了11%,延滞期缩短了2~4 h,最大菌体生物量提升了16%.
    1. [1]

      CHOI W J.Glycerol-based biorefinery for fuels and chemicals[J].Recent Patents on Biotechnology,2008,2(3):173.

    2. [2]

      ALMEIDA J R M,QUIRINO B F,FÁVARO L C L,et al.Biodiesel biorefinery:Opportunities and challenges for microbial production of fuels and chemicals from glycerol waste[J].Biotechno-logy for Biofuels,2012,5(1):48.

    3. [3]

      GERVÁSIO P D S,MACK M,CONTIERO J.Glycerol:A promising and abundant carbon source for industrial microbiology[J].Biotechnology Advances,2009,27(1):30.

    4. [4]

      CÉLINE F,EHRLICH S D,NOIROT P.A new mutation delivery system for genome-scale approaches in Bacillus subtilis[J].Molecular Microbiology,2010,46(1):25.

    5. [5]

      ANAGNOSTOPOULOS C A,SPIZIZEN J.Requirements for transformation in Bacillus Subtilis[J].Journal of Bacteriology,1961,81(5):741.

    6. [6]

      刘小红.甘油合成关键酶基因的克隆表达及其应用[D].汉中:陕西理工学院,2014.

    7. [7]

      SOUSA M D,DANTAS I T,FELIX A K N,et al.Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633[J].Brazilian Archives of Biology and Technology,2014,57(2):295.

    8. [8]

      KARLA M,RAMÓN D A,GEORGINA H,et al.Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate:Carbohydrate phosphotransferase system[J].Microbial Cell Factories,2008,7(1):1.

    9. [9]

      EMMANUELLE D,PASCALE S,SANDRINE P,et al.Antitermination by GlpP,catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression[J].Molecular Microbiology,2002,43(4):1039.

    10. [10]

      HERRING C D,RAGHUNATHAN A,HONISCH C,et al.Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale[J].Nature Genetics,2006,38(12):1406.

    11. [11]

      胡海艳,甘祥武,黄秀敏,等.基于易错PCR的β-甘露聚糖酶体外分子定向进化研究[J].轻工学报,2020,35(4):8.

    12. [12]

      付月灵,刘峙,张文蔚,等.植物病原细菌Ⅲ型效应子的双向作用[J].中国生物防治,2010(S1):95.

    13. [13]

      SHI T,WANG G,WANG Z,et al.Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome[J].PLoS ONE,2013,8(11):e81370.

    14. [14]

      ARNOLD K,BORDOLI L,KOPP J,et al.The SWISS-MODEL workspace:A web-based environment for protein structure homology modelling[J].Bioinformatics,2006,22(2):195.

    15. [15]

      ROBERT X,GOUET P.Deciphering key features in protein structures with the new ENDscript server[J].Nucleic Acids Research,2014,42(W1):W320.

    16. [16]

      ORMÖ M,BYSTROM C E,REMINGTON S J.Crystal structure of a complex of Escherichia coli glycerol kinase and an allosteric effector fructose 1,6-bisphosphate[J].Biochemistry,1998,37(47):16565.

  • 加载中
计量
  • PDF下载量:  28
  • 文章访问数:  2398
  • 引证文献数: 0
文章相关
  • 收稿日期:  2020-06-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
王光路, 张帆, 周忆菲, 等. 枯草芽孢杆菌甘油激酶编码基因定点突变提升甘油利用水平的研究[J]. 轻工学报, 2020, 35(6): 1-8. doi: 10.12187/2020.06.001
引用本文: 王光路, 张帆, 周忆菲, 等. 枯草芽孢杆菌甘油激酶编码基因定点突变提升甘油利用水平的研究[J]. 轻工学报, 2020, 35(6): 1-8. doi: 10.12187/2020.06.001
WANG Guanglu, ZHANG Fan, ZHOU Yifei, et al. Effect of site-specific mutagenesis of glycerol kinase coding gene on the glycerol utilization of Bacillus subtilis[J]. Journal of Light Industry, 2020, 35(6): 1-8. doi: 10.12187/2020.06.001
Citation: WANG Guanglu, ZHANG Fan, ZHOU Yifei, et al. Effect of site-specific mutagenesis of glycerol kinase coding gene on the glycerol utilization of Bacillus subtilis[J]. Journal of Light Industry, 2020, 35(6): 1-8. doi: 10.12187/2020.06.001

枯草芽孢杆菌甘油激酶编码基因定点突变提升甘油利用水平的研究

    作者简介:王光路(1986-),男,山东省枣庄市人,郑州轻工业大学讲师,博士,主要研究方向为代谢工程和合成生物学.
  • 1. 郑州轻工业大学 食品与生物工程学院, 河南 郑州 450001;
  • 2. 河南省口岸食品检验检测所, 河南 郑州 450003
基金项目:  国家自然科学基金联合基金项目(U1904101);河南省科技攻关重点研发与推广专项项目(202102310021,182102310607)

摘要: 采用无痕等位基因置换方法,将枯草芽孢杆菌基因组上的甘油激酶编码基因glpK第270位氨基酸残基M突变为I,构建了突变工程菌株枯草芽孢杆菌M270I,并分析了该突变菌株的生长特性.结果表明:对甘油激酶编码基因glpK进行定点突变可有效提升枯草芽孢杆菌对甘油的利用水平,与出发菌株枯草芽孢杆菌168 Δupp相比,突变菌株枯草芽孢杆菌M270I在M9甘油基本盐液体培养基中的比生长速率提升了11%,延滞期缩短了2~4 h,最大菌体生物量提升了16%.

English Abstract

参考文献 (16)

目录

/

返回文章