第29卷 第5期 2014年10月

文章编号:2095-476X(2014)05-0098-05

基态 $H_2 S^+$ 的几何结构与势能函数的研究

张焕君, 李俊玉

(郑州轻工业学院 技术物理系,河南 郑州 450002)

摘要:从量子力学出发,使用密度泛函理论 B3LYP,B3P86 方法和二次组态相关 QCISD 方法,在多种基组水平下,对 H₂,HS⁺和 H₂S⁺的结构进行优化,得到了其平衡几何构型、谐振频率和二阶力常数. 采用最小二乘法拟合出 H₂,HS⁺基态分子离子的解析势能函数,并运用多体项展式理论推导出了基态 H₂S⁺离子的解析势能函数,势能面正确反映了其平衡构型特征.

关键词:基态 H₂S⁺;几何结构;势能函数;多体项展式理论

中图分类号:056.1 文献标志码:A DOI:10.3969/j.issn.2095-476X.2014.05.022

Study on geometric structure and potential energy function for the ground state of H_2S^+

ZHANG Huan-jun, LI Jun-yu

(Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

Abstract: Upon quantum mechanics, the equililibrium geometry of H_2 , HS^+ and H_2S^+ had been calculated on the computational levels of density functional theory (DFT) B3P86, B3LYP and QCISD. The possible electronic state and reasonable dissociation limit for the ground state of H_2 , HS^+ and H_2S^+ molecule or ions were determined based on atomic and molecular reaction statics, and Murrell-Sorbie analytic potential energy function of H_2 and HS^+ molecule or ions had been derived through the least-square fitting to ab initio data. Similarly, the harmonic frequency had been calculated, and the analytic potential energy function of H_2S^+ ions had been derived using many-body expansion theory.

Key words: ground state of H2S+; geometric structure; potential energy function; many-body expansion theory

0 引言

分子的从头算与势能函数是原子分子物理学中重要的研究方向,分子势能函数是在整个空间范围内对分子性质,即几何、能量、力学与光谱性质的完全描述,也是研究分子振动转动、原子分子碰撞和分子反应动力学的基础^[1].

H₂S气体是常见的恶臭污染物之一,也是一种 高刺激性剧毒气体,其嗅觉阈值极低(0.03 mg/ m³),浓度在 30~40 mg/m³ 可引起嗅觉疲劳, 300 mg/m³时,1 h内可引起眼和呼吸道黏膜刺激症状,长期接触还可引起肺水肿.据世界卫生组织统 计,接触 H₂S 的职业有 70 多种,主要集中在石油、 染料、化纤、有色冶金等行业,以及市政工程中污水 处理、管道疏通等作业.我国于 1993 年颁布了恶臭 污染物排放标准 GB 14554293,目前常用的治理方 法有吸收、吸附、催化燃烧等,但工艺设备复杂、能 耗大.因此,在传统方法基础上开发针对恶臭污染

基金项目:河南省科技攻关项目(112102310655)

收稿日期:2014-06-19

作者简介:张焕君(1983—),女,河南省许昌市人,郑州轻工业学院助教,硕士,主要研究方向为材料物理.

物治理的新技术非常重要,需要对其结构和相关性 质进行深入研究^[2].

对 H_2S 体系,在 Born-Oppenheimer 近似条件下, J. M. L. Martin 等^[3] 报道了从头算势能函数, I. N. Kozin 等^[4]用 MORBID 理论方法优化了 H_2S 的势能 面. 而对于 H_2S^+ 的势能函数,目前还未见有文献详 细报道.

本文拟用 Gaussian03 程序,在密度泛函理论 B3LYP,B3P86^[5]和二次组态相关 QCISD 方法的基 础上,运用多种基组对 H_2 ,HS⁺和 H_2 S⁺的构型进行 几何优化,通过计算结果与实验值对比,优选出与 实验值符合较好的方法和基组进行进一步计算,从 而得到 H_2 ,HS⁺和 H_2 S⁺的势能函数,并讨论其静态 势能面特征.

1 H₂,HS⁺和 H₂S⁺的离解极限

根据原子分子反应静力学原理^[6],基态 H_2 , HS⁺的离解极限为

 $H_2(X^1 \Sigma_g^+) \rightarrow H(^2 S_g) + H(^2 S_g)$

 $\mathrm{HS}^{+}(\mathrm{X}^{3}\Sigma^{+}) \longrightarrow \mathrm{H}(^{2}\mathrm{S}_{g}) + \mathrm{S}^{+}(^{2}\mathrm{P}_{u})$

用量子力学计算,得到 H₂S⁺离子的基态电子 状态为 X²B₁,离子属于 C_{2v}群,离解通道构成为

$$H_{2}S^{+}(X^{2}B_{1}) \rightarrow \begin{cases} H(^{2}S_{g}) + H(^{2}S_{g}) + S^{+}(^{2}P_{u}) \\ H_{2}(^{1}\Sigma_{g}^{+}) + S^{+}(^{2}P_{u}) \end{cases}$$

2 H₂,HS⁺解析势能函数的计算结果 与分析

采用密度泛函理论 B3LYP, B3P86 和二次组态 相关 QCISD 方法,运用多种基组对 H₂, HS⁺分子离 子基态的几何构型进行了优化,结果见表1 和表2.

2.1 基态 $H_2(X^1 \Sigma_g^+)$ 分子的解析势能函数

由表 1 可知, $H_2(X^1 \Sigma_g^+)$ 分子在密度泛函 B3P86/D95(3df,3pd)基组水平下与实验结果最接 近,得到 $H_2(X^1 \Sigma_g^+)$ 分子的基态平衡核间距 $R_e =$ 0.074 15 nm,采用 B3P86/D95(3df,3pd)基组对基 态 $H_2(X^1 \Sigma_g^+)$ 分子进行单点能计算,得到一系列 势能值. 采用最小二乘法拟合出 Murrel-Sorbie 势能 函数为

 $V = -D_e(1 + a_1\rho + a_2\rho^2 + a_3\rho^3)\exp(-a_1\rho)$ ① 式中, $\rho = R - R_e$, R 为核间距, R_e 为 R 的平衡值; D_e 为离解能; a_1, a_2, a_3 为拟合参数, 结果见表 3, 与文 献[7]中实验值符合较好.图1所示为基态 $H_2(X^1 \Sigma_g^+)$ 分子的势能曲线, 图中离散点为单点理论计 算势能点, 实线为这些单点的势能拟合曲线. 由图 1 可以看出, 拟合结果与单点扫描结果完全一致. 这 说明拟合出的 Murrel-Sorbie 函数正确地反映了基态 $H_2(X^1 \Sigma_g^+)$ 分子的势能函数.

2.2 基态 HS⁺(X³∑⁺)离子的解析势能函数

由表 2 可知, HS⁺ ($X^3 \Sigma^+$)离子在密度泛函 B3LYP/6 - 311G (d, p) 基组水平下得到的 HS⁺ ($X^3 \Sigma^+$)离子的基态平衡核间距 $R_e =$ 0.137 47 nm, 与实验值 0.137 44 nm 非常接近. 采 用 B3LYP/6 - 311G(d, p)基组对基态 HS⁺离子进 行单点能计算, 得到一系列势能值. 采用最小二乘 法拟合出 Murrel-Sorbie 势能函数(式①), 结果见表 4, 与文献[7]中实验值符合较好. HS⁺ ($X^3 \Sigma^+$)离子 的势能曲线如图 2 所示.

3 基态 H₂S⁺(X²B₁)离子的计算结果 与分析

采用密度泛函理论 B3LYP, B3P86 和二次组态

表1 基态 $H_2(X^1 \Sigma_g^+)$ 分子的几何构型优化结果

nm

实验值	D95(3df, 3pd)	6-311G(3df, 3dp)	6-311G(d,p)	6 – 311G	优化方法
0.074 144 ^[7]	0.073 93	0.074 27	0.074 42	0.074 19	B3LYP
	0.074 15	0.074 41	0.074 53	0.074 34	B3P86
	0.073 94	0.074 23	0.074 35	0.074 65	QCISD
nm	化结果	*)离子的几何构型优	2 基态 HS ⁺ (X ³ Σ	表	
实验值	D95(3df,3pd)	6-311G(3df,3dp)	6-311G(d,p)	6 – 311G	优化方法
0.137 44 ^[7]	0.137 21	0.137 00	0.137 47	0.141 74	B3LYP
	0.137 00	0.13678	0.137 20	0.141 40	B3P86
	0.13649	0.136 14	0.136 21	0.142 22	OCISD

表 4 基态 HS⁺ (X³Σ⁺)离子势能函数的 M-S 参数

电子态	R_3 /nm	D_e /eV	a_1/nm^{-1}	a_2/nm^{-2}	a_3/nm^{-3}
$v^3 \Sigma^+$	0.137 44 ^[7]	3.48 ^[7]	—		—
ΛΔ	0.137 47	3.28	37.358	362.4	1 696

相关 QCISD 方法在 5 种基组水平下对基态 H_2S^+ 离子的键长和键角进行了优化和频率计算,结果见表 5. 通过比较发现,采用密度泛函方法 B3LYP 在 6 – 311G(3df,3pd)基组水平下得到的键角键长值与实验值最接近. 故势能面的计算均采用 B3LYP/6 – 311G(3df,3pd)方法,计算得到的键长、键角、二阶力常数和频率值见表 6. 通过高精度能量计算,得到 H_2S^+ 离子的离解能为 9. 285 2 eV.

图 2 基态 $HS^+(X^3\Sigma^+)$ 离子的势能曲线

3.1 基态 H₂S⁺离子的多体项展式分析势能函数

基于多体项展式理论^[9],H₂S⁺离子的解析势能 函数为

$$V(R_{1},R_{2},R_{3}) = V_{\text{HS}^{+}}{}^{(2)}(R_{1}) + V_{\text{S}^{+}\text{H}}{}^{(2)}(R_{2}) + V_{\text{HH}}{}^{(2)}(R_{3}) + V_{\text{HS}^{+}\text{H}}{}^{(3)}(R_{1},R_{2},R_{3}) \qquad (2)$$

式中, $V_{\text{HS}^+}^{(2)}(R_1)$, $V_{\text{S}^+\text{H}}^{(2)}(R_2)$, $V_{\text{HH}}^{(2)}(R_3)$ 分别是两体项的势能函数,采用 Murrel-Sorbie 势能函数,结果在表4、表5中列出; $V_{\text{HS}^+\text{H}}^{(3)}(R_1, R_2, R_3)$ 是三体项势能,采用的形式为

$$V_{\rm HS^+H}^{(3)}(R_1, R_2, R_3) = P \cdot T$$
 (3)

基态 H_2S^+ 离子的平衡构型为 C_{2v} 结构,为了便 于研究势能函数,根据势能面的结构特征,采用优 化内坐标,取 H_2S^+ 离子的 2 个平衡等长的键长为参 考结构, $R_1^0 = R_2^0 = R_{HS^+} = 0.136$ 29 nm, $R_3^0 = R_{HH} =$ 0.197 72 nm,计算中所使用的内坐标经以下变换成 为优化内坐标 S_i :

基组	B31	LYP	B3	P86	QC	CISD
	键长/nm	键角/(°)	键长/nm	键角/(°)	键长/nm	键角/(°)
6 – 311G	0.140 63	95.342 0	0.140 35	95.379 3	0.141 05	95.965 7
6-311G(d,p)	0.136 78	93.102 1	0.136 56	92.962 1	0.135 53	93.138 6
6 - 311G(3df, 3pd)	0.136 29	92.995 9	0.136 14	92.819 5	0.135 45	93.288 6
D95(3df,3pd)	0.136 48	92.957 3	0.136 34	92.790 0	0.135 71	93.112 6
实验值 ^[8]	0.136 00	93.000 0				

表5 基态 $H_2S^+(X^2B_1)$ 的几何优化结果

表6 基态 $H_2S^+(X^2B_1)$ 的平衡结构与性质

平衡结构	离解能	力常数/a.u.	谐振频率/cm ⁻¹
$R_1 = R_{\text{HS}^+} = 0.136\ 29\ \text{nm}$	$D_{\rm e} = 9.285 \ 2 \ {\rm eV}$	$f_{R_1R_1} = 0.244\ 62$	$v_1(A_1) = 1$ 187.848 7
$R_2 = R_{\rm S+H} = 0.136~29$ nm		$f_{R_1R_2} = 0.000\ 25$	$v_2(B_2) = 2573.0261$
$\theta = \angle HS^+ H = 92.995 9^\circ$		$f_{R_{1a}} = 0.005\ 65$	$v_3(A_1) = 2\ 570.\ 590\ 3$
		$f_{aa} = 0.17305$	

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix}$$
(4)

式中, $\rho_i = R_i - R_i^0$ (*i*=1,2,3);*S*₂ 对 *R*₁,*R*₂ 的交换是 反对称的, $(l_1 n_1 R_2)$ 交换后离子是相同的, 为了满 足这一物理意义, *S*₂ 只能含偶次项.

设 *P* 为对称内坐标 *S_i* 的多项式, *T* 为量程函数, 它们的形式分别为

$$P = C_1 + C_2 S_1 + C_3 S_2^2 + C_4 S_3 + C_5 S_1 S_3 + C_6 S_1^2 + C_7 S_3^2$$
 (5)

$$T = \left[1 - \tanh(\lambda_1 S_1/2)\right] \left[1 - \tanh(\lambda_3 S_3/2)\right] \quad \textcircled{6}$$

式⑤中有 7 个线性系数 C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 和 2 个非线性系数 λ_1 , λ_3 . 对势能面进行非线性 优化,可以确定 λ_1 , λ_3 , 而 7 个线性系数由 7 个已知 条件确定. 依据表 6 数据,分析势能函数③式的参数 可以确定,基态 $H_2S^+(X^2B_1)$ 离子的势能函数的三 体项 参 数 结 果 如下: $C_1 = -2$. 058 73, $C_2 =$ -0.630603, $C_3 = 0.214096$, $C_4 = -2.8905$, $C_5 =$ -6.22206, $C_6 = 2.29379$, $C_7 = 2.4165$, $\lambda_1 = 0.98$, $\lambda_3 = 1.208$.

3.2 基态 H₂S⁺离子的分析势能函数的等值势能图

为了直观地分析势能函数的物理意义^[10],展示 基态 H_2S^+ 离子的平衡结构与对称性,由式②—⑥ 和 $\lambda_1,\lambda_2,C_1-C_7$ 的数据,绘出基态 H_2S^+ 离子的等 值势能伸缩振动图和旋转图^[11-12]如图 3—图 5 所 示.其中,图 3 是固定∠HS⁺H = 92.995 9°时,表现 H—S⁺键和 H—S⁺键伸缩振动的等值势能图.从图 3 中可以准确地分析出 H_2S^+ 离子的平衡结构键长 为0.136 29 nm,键角∠HS⁺H = 92.995 9°,在该平 衡结构下准确地再现了离解能 D_e = 9.285 2 eV. 而 且从图 3 可知,2 个等价的通道 H + HS⁺→H₂S⁺上 没有鞍点存在,这表明当任何 1 个 H 原子向 HS⁺离 子接近时都表现为相同的无阈能反应.同时,也充 分体现了 H_2S^+ 离子的 H 原子和 H 原子具有交换对 称性,这与优化计算得到的 C_{2v} 结构完全相符.

图 4 是把 H—S⁺键 R_{HS^+} = 0.136 29 nm 固定 在 X 轴上,让 H 原子绕 H—S⁺键转动的等值势能 图,该图也清晰地再现了基态 H₂S⁺离子的平衡结 构特征. 从图 4 可以看出,H 原子绕 H—S⁺键转动 时,当 H 原子沿着与 H—S⁺键成 93°角的方向去 进攻 H—S⁺键时,H—S⁺键比较容易断裂,因而能

图 3 H_2S^+ 离子的等值势能伸缩振动图 (势能单位是 eV,等势线的间隔是 1.0 eV)

生成比较稳定的 H_2S^+ 离子,这与伸缩图得出的结论一致.

图 5 是把 H₂S⁺离子中 2 个 H 原子固定在 X 轴 上,H—H 的键长固定为 R_{HH} = 0. 197 72 nm,让 S⁺ 离子绕固定的 2 个 H 原子旋转时的等值势能图. 图 5 也清晰地显示了基态 H_2S^+ 离子的平衡结构特征, 当 S⁺离子处于∠HS⁺H 平分线即中垂线时,存在一 较深势阱,分子能量为 9.285 2 eV. 以上分析表明, 得到的基态 $H_2S^+(X^2B_1)$ 离子的势能函数解析式, 正确地反映了基态 $H_2S^+(X^2B_1)$ 离子的平衡结构 特征.

4 结论

本文从量子力学出发,使用密度泛函理论 B3LYP,B3P86 方法和二次组态相关 QCISD 方法,在 多种基组水平下计算了 H₂,HS⁺和 H₂S⁺分子离子 的平衡结构、力常数与谐振频率.优选出最精确的 方法与基组,用最小二乘法拟合出 H₂,HS⁺的解析 势能函数,并运用多体项展式理论导出了基态 H₂S⁺离子的解析势能函数,绘出的等值势能图清晰 地再现了基态 H₂S⁺离子的平衡结构与能量特征, 这为进一步研究 H₂S⁺体系的分子反应动力学提供 了依据.

参考文献:

- [1] Li Q, Wang H Y, Zhu Z H. Structure and analytic potential energy function for ground state of PuN and PuN₂ molecule[J]. Acta Chimica Sinica, 2003, 61:1930.
- [2] 李战国,胡真,闫学锋.低温等离子体治理污 H₂S 染的 实验研究[J].环境污染治理技术与设备,2006

(10):106.

- [3] Martin J M L, Faracois J P, Gijbels R. The high level ab initial studies on the H₂S molecules in the electronic ground states [J]. J Mol Spectrosc, 1995, 169:445.
- [4] Kozin I N, Jensen P J. The potential energy surface and the fourfold clustering of the rovibrational energy levels in H₂S molecule[J]. Mol Spectrosc, 1993, 163:483.
- [5] 李俊玉,陈鹏. S₄⁺和 S₄⁻同分异构体的密度泛函研究
 [J]. 郑州轻工业学院学报:自然科学版,2006,21
 (2):99.
- [6] 朱正和.原子与分子反应静力学[M].北京:科学出版 社,1996.
- [7] Hersberg G. Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules [M]. New York: Van Nostrand, 1979.
- [8] Yang C L, Huang Y J, Zhang X, et al. MRCI potential curve analytical potential energy function of the ground state of H₂[J]. Mol Struct (Theochem),2003,625:289.
- [9] Murrell J N, Farantons S C, Huxeley P, et al. Molecular Potential Energy Functions [M]. NewYork: Wiley, 1984.
- [10] 朱正和,俞华根. 分子结构与势能函数[M]. 北京:科 学出版社,1997.
- [11] 韩晓琴,肖夏杰,刘玉芳.OH,OCl,HOCl(1A')的从头 算与势能曲线[J].物理学报,2012(16):163101.
- [12] 蒋丽娟,李树红. 基态的平衡结构与光谱常数[J]. 河 南师范大学学报:自然科学版,2012(3):52.