[1] 姜莉莉,朱宝伟,李昌丽,等.微生物转化粗甘油制备高附加值产品的研究进展[J].生物质化学工程,2021,55(5):60-66.
[2] SAHOO S T,SINKU A,DAW P.A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation[J].RSC Advances,2024,14(50):37082-37086.
[3] GÓRSKA K,GARNCAREK Z.High-yield production of dihydroxyacetone from crude glycerol in fed-batch cultures of Gluconobacter oxydans[J].Molecules,2024,29(12):2932.
[4] WANG H,LI H P,LEE C K,et al.Lipase-catalyzed solvent-free synthesis of monoglycerides from biodiesel-derived crude glycerol:Optimized using response surface methodology[J].Heliyon,2024,10(10):e31292.
[5] KEOGH J,INRIRAI P,ARTIOLI N,et al.Nanostructured solid/liquid acid catalysts for glycerol esterification:The key to convert liability into assets[J].Nanomaterials,2024,14(7):615.
[6] MOKLIS M H,CHENG S,CROSS J S.Current and future trends for crude glycerol upgrading to high value-added products[J].Sustainability,2023,15(4):2979.
[7] HUR D H,LEE J,PARK S J,et al.Engineering of Pseudomonas putida to produce medium-chain-length polyhydroxyalkanoate from crude glycerol[J].International Journal of Biological Macromolecules,2024,281:136411.
[8] JAIBOON K,CHOUWATAT P,NAPATHORN S C.Valorization of biodiesel-derived crude glycerol for simultaneous biosynthesis of biodegradable polyhydroxybutyrate and exopolysaccharide by the newly isolated Burkholderia sp.SCN-KJ[J].International Journal of Biological Macromolecules,2024,281:136556.
[9] BIANCHI G,PESSINA A,AMI D,et al.Sustainable production of a biotechnologically relevant β-galactosidase in Escherichia coli cells using crude glycerol and cheese whey permeate[J].Bioresource Technology,2024,406:1310630.
[10] DIKSHIT P K,KHARMAWLONG G J,MOHOLKAR V S.Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans[J].Bioresource Technology,2018,256:302-311.
[11] KAUR J,SARMA A K,JHA M K,et al.Valorisation of crude glycerol to value-added products:Perspectives of process technology,economics and environmental issues[J].Biotechnology Reports,2020,27:e00487.
[12] ASOPA R P,BHOI R,SAHARAN V K.Valorization of glycerol into value-added products:A comprehensive review on biochemical route[J].Bioresource Technology Reports,2022,20:101290.
[13] JO M H,JU J H,HEO S Y,et al.High production of enantiopure (R,R)-2,3-butanediol from crude glycerol by Klebsiella pneumoniae with an engineered oxidative pathway and a two-stage agitation strategy[J].Microbial Cell Factories,2024,23(1):205.
[14] DISHISHA T,JAIN M,HATTI-KAUL R.High cell density sequential batch fermentation for enhanced propionic acid production from glucose and glycerol/glucose mixture using Acidipropionibacterium acidipropionici[J].Microbial Cell Factories,2024,23(1):91.
[15] WANG X L,SUN Y Q,PAN D T,et al.Kinetics-based development of two-stage continuous fermentation of 1,3-propanediol from crude glycerol by Clostridium butyricum[J].Biotechnology for Biofuels and Bioproducts,2024,17(1):38.
[16] 李建,孔婧,李圣龙,等.适应性实验室进化技术在微生物育种中的应用进展[J].生物工程学报,2021,37(1):130-41.
[17] 张瑷珲.用于1,3-丙二醇生产的丁酸梭菌发酵代谢轮廓分析和适应性进化研究[D].厦门:厦门大学,2019.
[18] 王世珍,严正平,邱隆辉,等.发酵粗甘油产乳酸的戊糖乳杆菌代谢进化[J].化工学报,2015,66(8):3195-3203.
[19] ZHANG C J,SHARMA S,MA C W,et al.Strain evolution and novel downstream processing with integrated catalysis enable highly efficient coproduction of 1,3-propanediol and organic acid esters from crude glycerol[J].Biotechnology and Bioengineering,2022,119(6):1450-1466.
[20] 孙大庆,齐贺,邸子清,等.嗜果聚糖Lactiplantibacillus plantarum 19M03的筛选及全基因组测序分析[J].食品科学,2024,45(23):113-122.
[21] KAWAI K,KANESAKI Y,YOSHIKAWA H,et al.Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis[J].Journal of Bioscience and Bioengineering,2019,128(2):162-169.
[22] JU J H,HEO S Y,CHOI S W,et al.Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance-enhanced Lactobacillus reuteri JH83[J].Bioresource Technology,2021,337:125361.
[23] ZHOU D Y,HU F X,LIN J Z,et al.Genome and transcriptome analysis of Bacillus velezensis BS-37,an efficient surfactin producer from glycerol,in response to D-/L-leucine[J].MicrobiologyOpen,2019,8(8):e00794.
[24] 黄申,周利峰,吕乔,等.嗜麦芽窄食单胞菌的培养基优化及其在烟叶发酵中的初步应用研究[J].轻工学报,2021,36(3):36-44.
[25] 赵健淞,付若晗,王跃麟.等.不动杆菌PSB-K解磷促生能力研究及全基因组测序分析[J].微生物学通报,2025,52(1):199-218.
[26] WANG G L,SHI T,CHEN T,et al.Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis[J].Metabolic Engineering,2018,48:138-149.
[27] 黄申,闫茗熠,陈梦月,等.基于转录组测序和RT-qPCR技术的烟草糖酯合成基因挖掘[J].轻工学报,2023,38(6):78-84.
,117.
[28] LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J].Methods,2001,25(4):402-408.
[29] 张丽华,刘世豪,唐培鑫,等.杜仲叶多糖对植物乳杆菌CICC 20022胆盐耐受性的影响[J].轻工学报,2024,39(3):1-8.
[30] 张爱静,李琳琼,王鹏杰,等.热胁迫对大肠杆菌细胞膜和膜蛋白的影响[J].中国农业科学,2020,53(5):1046-1057.
[31] PADDER S A,PRASAD R,SHAH A H.Quorum sensing:A less known mode of communication among fungi[J].Microbiological Research,2018,210:51-58.
[32] LIN Z F,XIAO Y T,ZHANG L,et al.Biochemical and molecular characterization of a novel glycerol dehydratase from Klebsiella pneumoniae 2e with high tolerance against crude glycerol impurities[J].Biotechnology for Biofuels and Bioproducts,2023,16(1):175.
[33] KIM B,OH S J,HWANG J H,et al.Polyhydroxybutyrate production from crude glycerol using a highly robust bacterial strain Halomonas sp.YLGW01[J].International Journal of Biological Macromolecules,2023,236:123997.
[34] WADITEE-SIRISATTHA R,KAGEYAMA H.Novel NhaC Na+/H+antiporter in cyanobacteria contributes to key molecular processes for salt tolerance[J].Plant Molecular Biology,2024,114(6):111.
[35] MONTES-BRAVO N,ROMERO-RODRÍGUEZ A,GARCÍA-YUNGE J,et al.Role of the spore coat proteins cotA and cotB,and the spore surface protein CDIF630_02480,on the surface distribution of exosporium proteins in Clostridioides difficile 630 Spores[J].Microorganisms,2022,10(10):1918.
[36] SMITA N,SASIKALA C,RAMANA C.New insights into peroxide toxicology:Sporulenes help Bacillus subtilis endospores from hydrogen peroxide[J].Journal of Applied Microbiology,2023,134(11):lxad238.
[37] 李雯静.芽孢杆菌SWB16的yisP基因克隆及下游环化酶基因sqhC缺失突变菌株的构建[D].重庆:西南大学,2013.
[38] 王光路,张帆,周忆菲,等.枯草芽孢杆菌甘油激酶编码基因定点突变提升甘油利用水平的研究[J].轻工学报,2020,35(6):1-8.
[39] GONZÁLEZ-VILLANUEVA M,GALAIYA H,STANILAND P,et al.Adaptive laboratory evolution of Cupriavidus necator H16 for carbon co-utilization with glycerol[J].International Journal of Molecular Sciences,2019,20(22):5737.
[40] 曲俊泽,陈天华,姚明东,等.ABC转运蛋白及其在合成生物学中的应用[J].生物工程学报,2020,36(9):1754-1766.
[41] OGURA M,TSUKAHARA K,HAYASHI K,et al.The Bacillus subtilis NatK-NatR two-component system regulates expression of the natAB operon encoding an ABC transporter for sodium ion extrusion[J].Microbiology,2007,153:667-675.
[42] SAMUL D,LEJA K,GRAJEK W.Impurities of crude glycerol and their effect on metabolite production[J].Annals of Microbiology,2014,64(3):891-898.
[43] 蒋欢,马江山,曾柏全,等.粗甘油发酵生产1,3-丙二醇的研究进展[J].生物技术通报,2022,38(10):45-53.
[44] KUMAR L R,YELLAPU S K,TYAGI R D,et al.A review on variation in crude glycerol composition,bio-valorization of crude and purified glycerol as carbon source for lipid production[J].Bioresource Technology,2019,293:122155.
[45] 王永成,陈涛,石婷,等.嘌呤核苷及其衍生物的代谢工程[J].中国生物工程杂志,2015,35(5):87-95.
[46] HUANG D,WANG R,DU W J,et al.Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol[J].Bioresource Technology,2015,196:263-272.
[47] ERNST R,EJSING S C,ANTONNY B.Homeoviscous adaptation and the regulation of membrane lipids[J].Journal of Molecular Biology,2016,428(24):4776-4791.
[48] 郑昀昀,陈茂娇,王敏,等.甲苯胁迫下有机溶剂耐受菌Anoxybacillus flavithermus ssp.yunnanesis E13T膜脂肪酸的变化[J].微生物学报,2015,55(6):719-724.
[49] 成永新.基于细胞膜脂组成分析的简单节杆菌乙醇耐受机制研究[D].天津:天津科技大学,2013.
[50] SMITA N,ANUSHA R,INDU B,et al.In silico analysis of sporulene biosynthesis pathway genes in the members of the class Bacilli[J].Archives of Microbiology,2023,205(6):233.
[51] 张东春,张雅娟,孙颖,等.细菌芽孢的形成、萌发及控制手段研究进展[J].食品工业科技,2023,44(15):463-473.
[52] UPDEGROVE T B,DELERUE T,ANANTHARAMAN V,et al.Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity[J].Science Advances,2024,10(42):eadq0791.