[1] |
戴永生,申玉军,夏飞,等.片烟复烤机回潮段加温加湿系统的改进设计[J].烟草科技,2019,52(9):115-120. |
[2] |
徐大勇,李新锋,范明登,等.复烤温度对片烟收缩率及大小分布的影响[J].烟草科技,2013,46(3):12-16. |
[3] |
徐波,姜焕元,范明登,等.基于“翠碧1号” 品种烟叶典型力学特性的打叶复烤加工技术及应用[J].烟草科技,2020,53(7):80-86. ,106. |
[4] |
KADLEC P,GABRYS B,STRANDT S.Data-driven soft sensors in the process industry[J].Computers & Chemical Engineering,2009,33(4):795-814. |
[5] |
SUN Q Q,GE Z Q.A survey on deep learning for data-driven soft sensors[J].IEEE Transactions on Industrial Informatics,2021,17(9):5853-5866. |
[6] |
ZHANG L,REN G F,DU J S,et al.A novel spatio-temporal attention-based bidirectional LSTM model for moisture content prediction in drying process[J].Drying Technology,2024,42(14):2122-2136. |
[7] |
ZHANG L,ZHANG X G,CHEN H,et al.A robust temperature prediction model of shuttle kiln based on ensemble random vector functional link network[J].Applied Thermal Engineering,2019,150:99-110. |
[8] |
ZHANG X G,ZHANG L,CHEN H,et al.Prediction of coal feeding during sintering in a rotary kiln based on statistical learning in the phase space[J].ISA Transactions,2018,83:248-260. |
[9] |
张雷,李金学,堵劲松,等.基于DGRU网络的烘丝机筒壁温度动态预测[J].轻工学报,2022,37(6):85-91. |
[10] |
ZHANG L,REN G F,LI S L,et al.A novel soft sensor approach for industrial quality prediction based TCN with spatial and temporal attention[J].Chemometrics and Intelligent Laboratory Systems,2025,257:105272. |
[11] |
ZHANG L,MA C F,ZOU Y J,et al.A multi-scale spatiotemporal deep learning model with variational mode decomposition for multistep prediction of moisture content in the leaf moistening process[J].Drying Technology,2025:1-15. |
[12] |
BAKIROV R,GABRYS B,FAY D.Multiple adaptive mechanisms for data-driven soft sensors[J].Computers & Chemical Engineering,2017,96:42-54. |
[13] |
URHAN A,ALAKENT B.Integrating adaptive moving window and just-in-time learning paradigms for soft-sensor design[J].Neurocomputing,2020,392:23-37. |
[14] |
HU J,WU M,CAO W H,et al.Soft-sensing of burn-through point based on weighted kernel just-in-time learning and fuzzy broad-learning system in sintering process[J].IEEE Transactions on Industrial Informatics,2024,20(5):7316-7324. |
[15] |
ZHANG X F,MA H B,ZHANG H Q.Data-driven control based on information concentration estimator and regularized online sequential extreme learning machine[J].Symmetry, 2024, 16(1): 88. |
[16] |
XUE J Q,CHEN X C,CHI Q Y,etal.Online learning-based adaptive device-free localization in time-varying indoor environment[J].Applied Sciences,2024,14(2): 643. |
[17] |
BELETE B A,GELMECHA D J,SINGH R S.Online sequential extreme learning machine (OSELM) based denoising of encrypted image[J].Expert Systems with Applications,2025,274:126999. |
[18] |
PENG H C,LONG F H,DING C.Feature selection based on mutual information:Criteria of max-dependency,max-relevance,and min-redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238. |
[19] |
SOARES S G,ARAÚJO R.An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction[J].Neurocomputing,2016,171:693-70. |