光敏性H2[Ag2(W10O32)(BPY)4]复合材料的制备及其光催化氧化环己烷性能研究
Study on the preparation of photosensitive H2[Ag2(W10O32)(BPY)4] composite and its photocatalytic oxidation of cyclohexane
-
摘要: 以[(n-C4H9)4N]4[W10O32],AgNO3和4,4'-联吡啶(BPY)为原料,通过水热法合成首例光敏性H2[Ag2(W10O32)(BPY)4]复合材料(命名为AgW-BPY),并对其结构、光学性质及非均相光催化氧化环己烷的性能进行了研究.结果表明:光敏性[W10O32]4-多酸阴离子与MOF框架之间的共价键作用,使[W10O32]4-多酸阴离子不易从MOF框架中溶脱,实现了[W10O32]4-多酸阴离子的非均相固载;AgW-BPY的禁带宽度值为2.30 eV,具有作为光催化剂的潜能;在室温可见光照射下,AgW-BPY对分子氧氧化环己烷生成环己酮和环己醇具有良好的光催化活性,转化效率为76.1%,经3次循环实验后,转化率仍为74.5%.Abstract: Using[(n-C4H9)4N]4[W10O32], AgNO3 and 4,4'-bipyridine (BPY) as raw materials, the first photosensitive H2[Ag2(W10O32)(BPY)4] material was synthesized by hydrothermal method (named AgW-BPY), and its structure, optical properties and performance of heterogeneous photocatalytic oxidation of cyclohexane were studied. The results showed that the covalent bond between the photosensitivity[W10O32]4- polyacid anion and the MOF framework made[W10O32]4- polyacid anion difficult to dissolve from the MOF framework, and the heterogeneous immobilization of anions W10O324- polyacid was successfully realized; AgW-BPY had a band gap value of 2.30 eV, which had the potential as a photocatalyst; under visible light irradiation at room temperature, AgW-BPY had good photocatalytic activity for molecular oxygen oxidize cyclohexane to cyclohexanone and cyclohexan, the conversion efficiency was 76.1%,and the conversion rate was still 74.5% after 3 cycles of experiments.
-
Key words:
- decatungstate /
- metal-organic framework /
- photocatalytic perfor-mance /
- cyclohexane
-
-
[1]
RAVELLI D,DONDI D,FAGNONI M,et al.Photocatalysis:A multi-faceted concept for green chemistry[J].Chem Soc Rev,2009,38(7):1999.
-
[2]
OKADA M,FUKUYAMA T,YAMADA K,et al.Sunlight photocatalyzed regioselective β-alkylation and acylation of cyclopentanones[J].Chem Sci,2014,5(7):2893.
-
[3]
MOLINARI A,BRATOVCIC A,MAGNACCA G,et al.Matrix effects on the photocatalytic oxidation of alcohols by[n-Bu4N]4W10O32 incorporated into sol-gel silica[J].Dalton Trans,2010,39(33):7826.
-
[4]
MOLINARI A,MALDOTTI A,BRATOVCIC A,et al.Photocatalytic properties of sodium decatungstate supported on sol-gel silica in the oxidation of glycerol[J].Catalysis Today,2013,206:46.
-
[5]
TANIELIAN C.Decatungstate photocatalysis[J].Coordination Chemistry Reviews,1998,178/180:1165.
-
[6]
BIGI F,CORRADINI A,QUARANTELLI C,et al.Silica-bound decatungstates as heterogeneous catalysts for H2O2 activation in selective sulfide oxidation[J].Journal of Catalysis,2007,250(2):222.
-
[7]
MALDOTTI A,MOLINARI A,BIGI F.Selective photooxidation of diols with silica bound W10O324-[J].Journal of Catalysis,2008,253(2):312.
-
[8]
SUN C Y,LIU S X,LIANG D D,et al.Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates[J].Journal of the American Chemical Society,2009,131(5):1883.
-
[9]
LIU J W,CHEN L F,CUI H,et al.Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J].Chemical Society Reviews,2014,43(16):6011.
-
[10]
CHEN C X,WEI Z W,JIANG J J,et al.Dynamic spacer installation for multirole metal-organic frameworks:A new direction toward multifunctional MOFs achieving ultrahigh methane storage working capacity[J].Journal of the American Chemical Society,2017,139(17):6034.
-
[11]
SHI D Y,HE C,QI B,et al.Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C-C bond formation[J].Chem Sci,2015,6(2):1035.
-
[12]
SHI D Y,ZHENG R,LIU,C S,et al.Dual-functionalized mixed Keggin-and Lindqvist-type Cu24-based POM@MOF for visible-light-driven H2 and O2 evolution[J].Inorg Chem,2019,58(11):7229.
-
[13]
SHI D Y,HE C,SUN W L,et al.A photosensitizing decatungstate-based MOF as heterogeneous photocatalyst for the selective C-H alkylation of aliphatic nitriles[J].Chem Commun,2016,52(25):4714.
-
[14]
MOLINARI A,AMADELLI R,CARASSITI V,et al.Photocatalyzed oxidation of cyclohexene and cyclooctene with (n-Bu4N)4W10O32 and (n-Bu4N)4W10O32/FeIII[meso-tetrakis(2,6-dichlorophenyl)porphyrin] in homogeneous and heterogeneous systems[J].Eur J Inorg Chem,2000,2000(1):91.
-
[15]
TZIRAKIS M,LYKAKIS I,ORFANOPOULOS M.Decatungstate as an efficient photocatalyst in organic chemistry[J].Chem Soc Rev,2009,38(9):2609.
-
[16]
WU W F,FU Z H,TANG S B,et al.(n-Bu4N)4W10O32-catalyzed selective oxygenation of cyclohexane by molecular oxygen under visible light irradiation[J].Appl Catal B Environ,2015,164:113.
-
[17]
FOURNIER M,KLEMPERER W,SILAVWE N.Inorganic syntheses[M].New York:John Wiley & Sons,Inc,1990.
-
[18]
SHELDRICK G M.SHELX-97,program for crystal structure solution[D].Göttingen:University of Göttingen,1997.
-
[19]
SHI D Y,ZHAO J W,CHEN L J,et al.Four types of 1D or 2D organic-inorganic hybrids assembled by arsenotungstates and CuⅡ-LnⅢ/Ⅳ heterometals[J].CrystEngComm,2012,14(9):3108.
-
[20]
ZHAO J W,SHI D Y,CHEN L J,et al.Two 1-D multi-nickel substituted arsenotungstate aggregates[J].CrystEngComm,2011,13(10):3462.
-
[21]
SHI D Y,ZHENG R,SUN M J,et al.Semiconductive copper(I)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts[J].Angew Chem Int Ed,2017,56(46):14637.
-
[22]
SHI D Y,ZENG L,MING Z,et al.A breathing MOF:Direct crystallographic observation of the site-selective C(sp3)-H functionalization[J].RSC Adv,2016,6(57):51936.
-
[23]
RAVELLI D,PROTTI S,FAGNONI M.Decatungstate anion for photocatalyzed "window ledge" reactions[J].Acc Chem Res,2016,49(10):2232.
-
[24]
MALDOTTI A,MOLINARI A,VARANI G,et al.Immobilization of (n-Bu4N)4W10O32 on mesoporous MCM-41 and amorphous silicas for photocatalytic oxidation of cycloalkanes with molecular oxygen[J].J Catal,2002,209(1):210.
-
[1]
计量
- PDF下载量: 34
- 文章访问数: 1702
- 引证文献数: 0