JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 35 Issue 6
December 2020
Article Contents
JIN Aiyun. Reduced-order synchronization of fractional-order simple pendulum multi-chaotic system[J]. Journal of Light Industry, 2020, 35(6): 100-104,108. doi: 10.12187/2020.06.012
Citation: JIN Aiyun. Reduced-order synchronization of fractional-order simple pendulum multi-chaotic system[J]. Journal of Light Industry, 2020, 35(6): 100-104,108. doi: 10.12187/2020.06.012 shu

Reduced-order synchronization of fractional-order simple pendulum multi-chaotic system

  • Received Date: 2019-09-01
    Accepted Date: 2020-03-22
  • By reducing the order of the established simple pendulum differential system, the sufficient conditions for the reduced-order synchronization of the single pendulum multi-chaotic system were obtained.The study proved that the fractional-order single pendulum multi-chaotic system was reduced-order synchronization under the appropriate controller.The value simulation results further verified the validity of this reduced-order method.
  • 加载中
    1. [1]

      宋晓娜,宋帅,满景涛.不确定分数阶Genesio混沌系统的反演滑模同步[J].山东科技大学学报(自然科学版),2019,38(5):66.

    2. [2]

      毛北行.纠缠混沌系统的比例积分滑模同步[J].山东大学学报(工学版),2018,48(4):50.

    3. [3]

      SONG X N,SONG S,MAN J T. Backstepping sliding mode synchronization of uncertain fractional-order Genesio chaotic system[J].Journal of Shandong University of Science and Technology(Natural Science), 2019,38(5):66.

    4. [4]

      毛北行,周长芹.分数阶不确定Duffling混沌系统的终端滑模同步[J].东北师范大学学报(自然科学版),2018,50(2):47.

    5. [5]

      王东晓.分数阶超混沌Bao系统的比例积分滑模同步[J].内蒙古农业大学学报(自然科学版),2018,39(3):83.

    6. [6]

      毛北行,孟晓玲.具有死区输入的分数阶多涡卷混沌系统的有限时间同步[J].浙江大学学报(理学版),2017,44(3):302.

    7. [7]

      SARA H,HEYDAR T S.Design of nonlinear conformable fractional-order sliding mode controller for a class of nonlinear systems[J].Journal of Control,Automation and Electrical Systems,2019,35(3):313.

    8. [8]

      SONG S, ZHANG B Y, SONG X N, et al.Fractional-order adaptive neuro-fuzzy sliding mode H control for fuzzy singularly perturbed systems[J].Journal of Franklin Institute,2019,356(10):5027.

    9. [9]

      毛北行.分数阶Newton-Leipnik混沌系统滑模同步的两种方法[J].吉林大学学报(理学版),2018,56(3):708.

    10. [10]

      MAO B X.Four methods for sliding mode synchronization of fractional-order new hyperchaotic system[J].Paper Asia,2018,13(5):118.

    11. [11]

      MEI J, JIANG M H, WANG J. Finite-time structure identification and synchronization of drive-response systems with uncertain parameter[J]. Commun Nonlinear Sci Numer Simulat,2013(18):999.

    12. [12]

      毛北行,李巧利.一类分数阶Duffling-Van der pol系统的混沌同步[J].吉林大学学报(理学版),2016,54(2):369.

    13. [13]

      YU J Y, LEI J W.Synchronization of chaotic system with adaptive transfer function sliding mode method[J].Optic,2017,132:209.

    14. [14]

      LU J G. Chaotic dynamics and cynchronization of fractional-order Genesio-Tesi systems[J].Chinese Physics,2005,14(8):1517.

    15. [15]

      毛北行,李巧利.一类分数阶Genesio-Tesi系统的滑模混沌同步[J].中山大学学报(自然科学版),2017,56(2):76.

    16. [16]

      郎和.保守单摆系统中的混沌运动[J].西北师范大学学报(自然科学版),2002,38(4):108.

    17. [17]

      郎和.保守单摆系统中的复杂结构[J].西北师范大学学报(自然科学版),2003,39(2):33.

    18. [18]

      贺尚宏,谢进,程杰锋,等.非线性单摆动力系统多参数混沌边缘的研究[J].机械传动,2015,39(8):1.

    19. [19]

      程春蕊,朱军辉,毛北行.分数阶单摆系统的终端滑模混沌同步[J].工程数学学报,2019,36(1):99.

    20. [20]

      胡建兵,赵灵冬.分数阶系统稳定性理论与控制研究[J].物理学报,2013,62(24):5041.

Article Metrics

Article views(2076) PDF downloads(6) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return