JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 36 Issue 3
June 2021
Article Contents
LOU Jianyang, NAN Guofang and SONG Chuanchong. Fault diagnosis of rolling bearing based on wavelet packet decomposition and convolutional neural network[J]. Journal of Light Industry, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010
Citation: LOU Jianyang, NAN Guofang and SONG Chuanchong. Fault diagnosis of rolling bearing based on wavelet packet decomposition and convolutional neural network[J]. Journal of Light Industry, 2021, 36(3): 79-87. doi: 10.12187/2021.03.010 shu

Fault diagnosis of rolling bearing based on wavelet packet decomposition and convolutional neural network

  • Received Date: 2020-07-26
    Accepted Date: 2021-02-05
  • Aiming at the problems that the rolling bearing of rotating machinery is liable to be damaged in bad working environment,and the fault diagnosis at present relies too much on manual feature extraction,a rolling bearing fault diagnosis method based on wavelet packet decomposition and convolutional neural network (WPDEC-CNN) was proposed.This method used wavelet packet decomposition to process the vibration time-domain signal to obtain wavelet coefficients that characterized the signal similarly, and then preprocessed them and input them into CNN for classification and recognition.The experimental results showed that the loss rate of WPDEC-CNN was 0.108 9, which was lower than that of the BP neural network and the CNN.The fault classification accuracy of WPDEC-CNN reached 97.3%, higher than that of the BP neural network and the CNN, which verified the effectiveness of the proposed fault diagnosis method.
    1. [1]

      付阶辉.基于Petri网的故障诊断方法研究[D].南京:东南大学,2004.

    2. [2]

      张润林.旋转机械故障机理与诊断技术[M].北京:机械工业出版社,2002.

    3. [3]

      李舜酩,郭海东,李殿荣.振动信号处理方法综述[J].仪器仪表学报,2013,34(8):1907.

    4. [4]

      WANG J,MA Y,ZHANG L,et al.Deep learning for smart manufacturing:methods and applications[J].Journal of Manufaturing Systems,2018(48):144.

    5. [5]

      MATEO C,TALAVERA J.Short-time Fourier transform with the window size fixed in the frequency domain[J]. Digital Signal Processing,2018(77):13.

    6. [6]

      YANG Z J,YANG L H,QING C M.An oblique-extrema-based approach for empirical mode decomposition[J].Digital Signal Processing,2010(20):699.

    7. [7]

      ZHANG K,GENCAY R,YAZGAN M.Application of wavelet decomposition in time-series forecasting[J].Economics Letters,2017(158):41.

    8. [8]

      VAUTRIN D,ARTUSI X,LUCAS M,et al.A novel criterion of wavelet packet best basis selection for signal classification with application to brain-computer interfaces[J].IEEE Transactions on Biomedical Engineering,2009,56(11):2734.

    9. [9]

      QIN Y.A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis[J].IEEE Transactions on Industrial Electronics,2018,65(3):2716.

    10. [10]

      DING X,HE Q.Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis[J].IEEE Transactions on Instrumentation and Measurement,2017,66(8):1926.

    11. [11]

      张建宇,李文斌,张随征,等.多小波自适应阈值降噪在故障诊断中的应用[J].北京工业大学学报,2013,39(2):166.

    12. [12]

      赵元喜,胥永刚,高立新,等.基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术[J].振动与冲击,2010,29(10):162.

    13. [13]

      JIA F,LEI Y,LIN J,et al.Deep neural networks:a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J].Mechanical Systems and Signal Processing,2016,72/73:303.

    14. [14]

      GAO R,YAN R.Wavelets[M].Boston:Springer,2011.

    15. [15]

      XUE J,XU S,SHUI P.Knowledge-based target detection in compound Gaussian clutter with inverse Gaussian texture[J].Digital Signal Processing,2019,95:102590.

    16. [16]

      TANG Z R,ZHU R H,LIN P,et al.A hardware friendly unsupervised memristive neural network with weight sharing mechanism[J].Neurocomputing,2019,332(7):193.

    17. [17]

      SMITH W,RANDALL R.Rolling element bearing diagnostics using the case western reserve university data:a benchmark study[J].Mechanical Systems and Signal Processing,2015,64/65:100.

    18. [18]

      LIU Y,YAO L,XIA Z,et al.Geographical discrimination and adulteration analysis for edible oils using two-dimensional correlation spectroscopy and convolutional neural networks (CNNs)[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,246(5):118973.

    19. [19]

      HUANG W Y,CHENG J S,YANG Y.Rolling bearing fault diagnosis and performance degradation assessment under variable operation conditions based on nuisance attribute projection[J].Mechanical Systems and Signal Processing,2019,114(1):165.

    20. [20]

      JIANG W,ZHOU J,LIU H,et al.A multi-step progressive fault diagnosis method for rolling element bearing based on energy entropy theory and hybrid ensemble auto-encoder[J].ISA Transactions,2019(87):235.

  • Cited By

    Periodical cited type(8)

    1. 赖荣燊,闫高强. 基于卷积神经网络的滚动轴承故障诊断研究综述[J]. 机电工程. 2024(02) :194-204 .
    2. 甄开起,刘尚旗,曹梦龙. 基于参数优化BP神经网络的数控机床主轴承故障诊断[J]. 青岛科技大学学报(自然科学版). 2024(04) :129-136+145 .
    3. 赵奇,张骞. 基于WPD_CNN_Bilstm自主更新的轴承故障诊断模型[J]. 青岛大学学报(工程技术版). 2024(04) :20-25 .
    4. 沙云东,陈兴武,栾孝驰,赵宇,李壮. 基于小波包分解-峭度值指标-希尔伯特包络解调融合方法处理声发射信号的滚动轴承故障诊断[J]. 科学技术与工程. 2023(21) :9315-9323 .
    5. 刘林密,崔伟成,李浩然,桑德一. 基于卷积神经网络的滚动轴承故障诊断方法[J]. 计算机测量与控制. 2023(09) :9-15 .
    6. 李敬兆,邢梦垚. 基于WPCE-CNN的音频感知提升机健康状况研究[J]. 佳木斯大学学报(自然科学版). 2022(01) :111-115 .
    7. 郑琪,赵春晖. 轴承磨损阶段划分与分段剩余寿命估计方法[J]. 控制工程. 2022(04) :593-599+636 .
    8. 张宣,刘安康,张培玲. 基于嵌入式AI的癫痫发作监测系统实现[J]. 中国医学物理学杂志. 2022(09) :1151-1158 .

    Other cited types(17)

Article Metrics

Article views(1604) PDF downloads(31) Cited by(25)

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return