JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 37 Issue 1
March 2022
Article Contents
XING Shengli, SONG Lili, ZHANG Zhiping, et al. Optimization of liquid-state fermentation medium conditions for high yield cellulase by Trichoderma reesei[J]. Journal of Light Industry, 2022, 37(1): 20-25. doi: 10.12187/2022.01.003
Citation: XING Shengli, SONG Lili, ZHANG Zhiping, et al. Optimization of liquid-state fermentation medium conditions for high yield cellulase by Trichoderma reesei[J]. Journal of Light Industry, 2022, 37(1): 20-25. doi: 10.12187/2022.01.003 shu

Optimization of liquid-state fermentation medium conditions for high yield cellulase by Trichoderma reesei

  • Received Date: 2021-04-16
  • The liquid-state fermentation medium conditions of Trichoderma reesei of high yield cellulase were optimized with natural agricultural products as the main raw materials by different test design methods, such as the Plackett-Burman (PB), steepest climbing, Box-Behnken (BB) and response surface method (RSM) analysis. The results showed that the optimal fermentation medium conditions for enzyme production were soybean meal 2.140%, wheat bran 1.88%, peptone 0.30%. Under these conditions, the cellulase activity of the fermentation broth could reach (42.62±1.30) U/mL. In the later stage of fermentation (5 d), with the large growth of mycelium, the cellulase activity increased continuously. The crude enzyme solution could degrade cellulose and hemicellulose in corn straw to produce fermentable sugars such as free glucose, xylose, arabinose and cellobiose.
  • 加载中
    1. [1]

      徐晓, 程驰, 袁凯, 等.里氏木霉产纤维素酶研究进展[J].中国生物工程杂志, 2021, 41(1):52-61.

    2. [2]

      任俊莉, 刘慧莹, 王孝辉, 等.木质纤维素资源化主要途径及半纤维素优先资源化利用策略[J].生物加工过程, 2020, 18(1):1-12.

    3. [3]

      SONG L L, LIU X X.Research progress of cellulase[J].Asian Agricultural Research, 2019, 11(3):74-77, 82.

    4. [4]

      AHMED A, BIBI A.Fungal cellulase; production and applications:minireview[J].International Journal of Health and Life-Sciences, 2018, 4(1):19-36.

    5. [5]

      LI F Y, QIN F Y, CAI C, et al.Effect of cellulase on the UCST behavior of sulfobetaine zwitterionic surfactants and the cellulase recovery mechanism[J].Sustainable Energy & Fuels, 2021, 5(3):750-757.

    6. [6]

      MENG Q S, LIU C G, ZHAO X Q, et al.Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass[J].Journal of Biotechnology, 2018, 285:56-63.

    7. [7]

      刘培洋, 刘芳, 蔡亚慧, 等.产γ-聚谷氨酸解淀粉芽孢杆菌LDJ11培养基组分优化研究[J].轻工学报, 2018, 33(3):30-38.

    8. [8]

      MALIK W A, KHAN H M, JAVED S.Bioprocess optimization for enhanced production of bacterial cellulase and hydrolysis of sugarcane bagasse[J/OL].BioEnergy Research, 2021, 1-14[2021-02-26].https://link.springer.com/article/10.1007%2Fs12155-021-10259-3.

    9. [9]

      YAN Z L, CAO X H, LIU Q D, et al.A shortcut to the optimization of cellulase production using the mutant Trichoderma reesei YC-108[J].Indian Journal of Microbiology, 2012, 52(4):670-675.

    10. [10]

      WANG P P, LIU T, LIU Y N, et al.In-situ and real-time probing cellulase biosensor formation and its interaction with lignosulfonate in varied media[J].Sensors and Actuators B:Chemical, 2020, 329:129114.

    11. [11]

      BENTIL J A, THYGESEN A, MENSAH M, et al.Cellulase production by white-rot basidiomycetous fungi:solid-state versus submerged cultivation[J].Applied Microbiology and Biotechno-logy, 2018, 102(14):5827-5839.

    12. [12]

      中华人民共和国国家发展和改革委员会.纤维素酶制剂:QB 2583-2003[S].北京:中国标准出版社, 2003.

    13. [13]

      武英才, 李娜, 田威, 等.响应面法优化阿卡波糖发酵培养基[J].沈阳药科大学学报, 2011(11):898-905.

    14. [14]

      HENIKA R G.Simple and effective system for use with response surface methodology[J].Cereal Sci Today, 1972, 17:309-334.

    15. [15]

      WOSTEN H A B, MOUKHA S M, SIETSMA J H, et al.Localization of growth and secretion of proteins in Aspergillus niger[J].Microbiology, 1991, 137:2017-2023.

    16. [16]

      VELKOVSKA S, MARTEN M R, OLLIS D F.Kinetic model for batch cellulase production by Trichoderma reesei RUT-C30[J].Journal of Biotechnology, 1997, 54(2):83-94.

    17. [17]

      LI F Y, QIN F Y, CAI C, et al.Effect of cellulase on the UCST behavior of sulfobetaine zwitterionic surfactants and the cellulase recovery mechanism[J].Sustainable Energy & Fuels, 2021, 5(3):750-757.

    18. [18]

      LI F Y, QIN F Y, PANG Y X, et al.Synthesis of a UCST-type zwitterionic polymer for efficiently recycling cellulase at room temperature[J].Green Chemistry, 2021, 23(7):2738-2746.

    19. [19]

      XIANG J Y, WANG X Q, SANG T, et al.Cellulase production from Trichoderma reesei RUT C30 induced by continuous feeding of steam-exploded Miscanthus lutarioriparius[J].Industrial Crops and Products, 2021, 160:113129.

    20. [20]

      DEY P, RANGARAJAN V, SINGH J, et al.Current perspective on improved fermentative production and purification of fungal cellulases for successful biorefinery applications:A brief review[J/OL].Biomass Conversion and Biorefinery, 2021, 1-29[2021-01-06].https://link.springer.com/article/10.1007%2Fs13399-020-01227-6.

    21. [21]

      MHUANTONG W, CHAROENSRI S, POONSRISAWAT A, et al.High quality Aspergillus aculeatus genomes and transcriptomes:A platform for cellulase activity optimization toward industrial applications[J].Frontiers in Bioengineering and Biotechnology, 2021, 8:607176.

Article Metrics

Article views(3958) PDF downloads(97) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return