JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 37 Issue 1
March 2022
Article Contents
JIN Baodan, LI Xia, QIN Hexian, et al. Effect of nanoscale zero-valent iron cooperating with sulphate on hydrolytic acidification performance of excess sludge with low concentration and low organic matter[J]. Journal of Light Industry, 2022, 37(1): 110-117. doi: 10.12187/2022.01.015
Citation: JIN Baodan, LI Xia, QIN Hexian, et al. Effect of nanoscale zero-valent iron cooperating with sulphate on hydrolytic acidification performance of excess sludge with low concentration and low organic matter[J]. Journal of Light Industry, 2022, 37(1): 110-117. doi: 10.12187/2022.01.015 shu

Effect of nanoscale zero-valent iron cooperating with sulphate on hydrolytic acidification performance of excess sludge with low concentration and low organic matter

  • Received Date: 2021-03-23
    Accepted Date: 2021-07-07
  • The waste activated sludge with low concentration and low organic matter was fermented under different conditions including natural, nanoscale zero-valent iron (nZVI), 2KHSO5·KHSO4·K2SO4(PMS), K2SO4, nZVI+PMS and nZVI+K2SO4. The soluble protein, polysaccharide, short volatile fatty acids (SCFAs) and biological enzyme were analyzed during the fermentation process, and the effects of nZVI on hydrolytic acidification performance of the excess sludge were studied. The results showed that hydrolytic acidification performance of the nZVI+PMS fermentation system was optimal, and the mass concentration of protein, polysaccharide and SCFAs was 255.07 mg/L, 138.31 mg/L and 356.8 mg/L respectively. The maximal activity of protease and α-glucosidase appeared in the nZVI+PMS fermentation system, however the maximal activity of alkaline phosphatase and acid phosphatase appeared in the nZVI fermentation system. In addition, the bioenzyme activity of the K2SO4 fermentation system was similar to that of natural fermentation system. These results indicated that nZVI could improve effectively the fermentation performance of the waste activated sludge with low concentration and low organic matter under PMS condition.
  • 加载中
    1. [1]

      YUAN Y, WANG S Y, LIU Y, et al.Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems[J].Bioresource Technology, 2015, 197:56-63.

    2. [2]

      任南琪, 王爱杰.厌氧处理构筑物中SRB的生态学[J].哈尔滨建筑大学学报, 2001(1):39-44.

    3. [3]

      JAN W J, EELCO A A, GABRIELLE T, et al.Optimisation of sulphate reduction in a methanol-fed thermophilic bioreactor[J].Water Research, 2002, 36(7):1825-1833.

    4. [4]

      WEI J, HAO X D, MARK C M X, et al.Feasibi-lity analysis of anaerobic digestion of excess sludge enhanced by iron:A review[J].Renewable and Sustainable Energy Reviews, 2018, 89:16-26.

    5. [5]

      ZHOU J, YOU X G, NIU B W, et al.Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron[J].Science of the Total Environment, 2019, 703:135532.

    6. [6]

      LI X M, ZHAO J W, WANG D B, et al.An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid[J].Chemosphere, 2016, 144:160-167.

    7. [7]

      陈同斌, 李艳霞, 罗维, 等.中国城市污泥有机质及养分含量与土地利用[J].生态学报, 2003, 11:2463-2474.

    8. [8]

      LIAO X C, LI H.Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation[J].Applied Energy, 2015, 148:252-259.

    9. [9]

      刘常青, 王玉兰, 林鸿, 等.低有机质污泥投加药剂联合低温热水解及后续厌氧发酵研究[J].化工学报, 2017, 68(4):1608-1613.

    10. [10]

      XU Y, ZHENH L K, GENG H, et al.Enhancing acidogenic fermentation of waste activated sludge via isoelectric-point pretreatment:Insights from physical structure and interfacial thermodynamics[J].Water Research, 2020, 185:116237.

    11. [11]

      金宝丹, 王淑莹, 邢立群, 等.单过硫酸氢钾复合盐对剩余污泥厌氧发酵的影响[J].东南大学学报(自然科学版), 2016, 46(2):434-443.

    12. [12]

      金宝丹, 王淑莹, 邢立群, 等.不同发酵方式对污泥厌氧发酵性能的影响及其发酵液利用[J].中国环境科学, 2016, 36(7):2079-2089.

    13. [13]

      JIA T T, WANG Z Z, SHAN H Q, et al.Effect of nanoscale zero-valent iron on sludge anaerobic digestion[J].Resources Conservation & Recycling, 2017, 127:190-195.

    14. [14]

      江峰, 孙容容, 梁振声, 等.硫酸盐还原菌处理酸性矿山废水的研究进展[J].华南师范大学学报(自然科学版), 2018, 50(2):25-31.

    15. [15]

      ASSOCIATION C, WASHINGTON D A.Standard methods for the examination of water and wastewater[J].American Physical Education Review, 1995, 24:481-489.

    16. [16]

      YUAN H Y, CHEN Y G, ZHANG H X, et al.Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J].Environmental Science & Technology, 2006, 40:2025-2029.

    17. [17]

      GOEL R, MINO T, SATOH H, et al.Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor[J].Water Research, 1998, 32:2081-2088.

    18. [18]

      GUO J, KANG Y K, FENG Y.Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron[J].Journal of Environmental Management, 2017, 203(1):278-285.

    19. [19]

      张跃华, 赵永勋.过硫酸氢钾复合盐消毒作用实验研究[J].中国卫生检验杂志, 2005, 1(15):40-41.

    20. [20]

      KANG J, WU W C, LIU W X, et al. Zero-valent iron (ZVI) activation of persulfate (PS) for degradation ofpara-chloronitrobenzene in soil[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103:140-146.

    21. [21]

      LI Y C, XU Z X, WU J X, et al.Efficiency and mechanisms of antimony removal from wastewater using mixed cultures of iron-oxidizing bacteria and sulfate-reducing bacteria based on scrap iron[J].Separation and Purification Technology, 2020, 246:116756.

    22. [22]

      JIN B D, WANG S Y, XING L Q, et al.Long term effect of alkali types on waste activated sludge hydrolytic acidification and microbial community at low temperature[J].Bioresource Technology, 2016, 200:587-597.

    23. [23]

      JIN B D, NIU J T, DAI J W, et al.New insights into the enhancement of biochemical degradation potential from waste activated sludge with low organic content by potassium monopersulfate treatment[J].Bioresource Technology, 2018, 265:8-16.

    24. [24]

      钮劲涛, 金宝丹, 周萍, 等.CaO2对城市污水处理中剩余污泥厌氧发酵产酸性能与生物酶活性的影响[J].轻工学报, 2019, 34(4):64-73.

    25. [25]

      CHEN Y, CHENH J J, KURT S C.Inhibition of anaerobic digestion process:A review[J]. Bioresource Technology, 2008, 99(10):4044.

    26. [26]

      AURORE C, ARNAUD C, JEAN C B.Availabi-lity of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges[J].Enzyme & Microbial Technology, 2002, 31(1/2):179-186.

    27. [27]

      HUANG X F, SHEN C M, LIU S, et al.Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants[J].Chemical Engineering Journal, 2015, 264:280-290.

    28. [28]

      CGROST R J, SIUDA W, ALBRECHT D, et al.A method for determining enzymatically hydrolyzable phosphate (EHP) in natural waters[J].Limnology & Oceanography, 1986, 31(3):662-667.

    29. [29]

      KLOEKE F V, GEESEY G G.Localization and identification of populations of phosphatase-active bacterial cells associated with activated sludge flocs[J].Microbial Ecology, 1999, 38:201-214.

Article Metrics

Article views(2648) PDF downloads(14) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return