JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 37 Issue 5
October 2022
Article Contents
ZHANG Xiaoxia, CHEN Shengling, ZHU Zhiqun, et al. Metabolic engineering for improving the L-lysine production by Bacillus subtilis[J]. Journal of Light Industry, 2022, 37(5): 1-11. doi: 10.12187/2022.05.001
Citation: ZHANG Xiaoxia, CHEN Shengling, ZHU Zhiqun, et al. Metabolic engineering for improving the L-lysine production by Bacillus subtilis[J]. Journal of Light Industry, 2022, 37(5): 1-11. doi: 10.12187/2022.05.001 shu

Metabolic engineering for improving the L-lysine production by Bacillus subtilis

  • Received Date: 2022-02-13
  • In order to construct a dual-functional B.subtilis with probiotic function and L-lysine production, B.subtilis ACCC11025 was systematically modified. These results indicated that the strain with replacement of thrD,zwf and gnd from B.subtilis by lysC311,zwf234 and gnd361 from C.glutamicum (i.e.,B.subtilis XH4) was beneficial to L-lysine production, and the yield of L-lysine was (20.3±1.9) g/L. In addition, the strain with replacement of hom from B.subtilis by hom59 from C.glutamicum(i.e.,B.subtilis XH5)produced (23.2±1.7) g/L of L-lysine without the decrease of cell growth. In addition, the yield of by-products in B.subtilis XH5 was significantly decreased. Moreover, the DapDH from C.glutamicum was introduced into the B.subtilis XH5 (i.e, B.subtilis XH6), resulting in the increase of L-lysine production because of the redirection of the carbon flux in DAP pathway. The resulted recombinant strain B.subtilis XH6 produced (25.6±2.3) g/L of L-lysine.
    1. [1]

      LIU N,ZHANG T T,RAO Z M,et al.Reconstruction of the diaminopimelic acid pathway to promote L-lysine production in Corynebacterium glutamicum[J].International Journal of Molecular Sciences,2021,22(16):9065.

    2. [2]

      LI C L,RUAN H Z,LIU L M,et al.Rational reformation of Corynebacterium glutamicum for producing L-lysine by one-step fermentation from raw corn starch[J].Applied Microbiology and Biotechnology,2022,106(1):145-160.

    3. [3]

      XU J Z,RUAN H Z,YU H B,et al.Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar[J].Microbial Cell Factories,2020,19(1):39.

    4. [4]

      王雅敏,刘莹露,李景河,等.益生菌发酵饲料对蛋鸡生产性能、蛋品质及脂质代谢的影响[J].家畜生态学报,2021,42(10):27-33.

    5. [5]

      张桂枝,刘璐,靳双星,等.枯草芽孢杆菌发酵制剂对饲喂含黄曲霉毒素B1饲料肉鸡免疫功能的影响[J].中国畜牧杂志,2019,55(7):142-146.

    6. [6]

      WANG C,WEI S Y,XU B C,et al.Bacillus subtilis and Enterococcus faecium co-fermented feed regulates lactating sow's performance, immune status and gut microbiota[J].Microbial Biotechnology,2021,14(2):614-627.

    7. [7]

      MALIK W A,JAVED S.Biochemical characterization of cellulase from Bacillus subtilis strain and its effect on digestibility and structural modifications of lignocellulose rich biomass[J].Frontiers in Bioengineering and Biotechnology,2021,9:800265.

    8. [8]

      LEE J E,KYE Y C,PARK S M,et al.Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens[J].Veterinary Research,2020,51(1):68.

    9. [9]

      张林鑫,赵春萍,王婧,等.枯草芽孢杆菌对家禽生产影响的研究概述[J].贵州畜牧兽医,2020,44(3):11-14.

    10. [10]

      曾国洪,丛丽娜,毕楠.枯草芽孢杆菌诱变株产抗菌脂肽的特性[J].大连工业大学学报,2019,38(4):235-238.

    11. [11]

      欧荣娣,邢月腾,范觉鑫,等.高产赖氨酸枯草芽孢杆菌的选育[J].中国饲料,2014(20):29-31.

    12. [12]

      XU J Z,WU Z H,GAO S J,et al.Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum[J].Microbial Cell Factories,2018,17:105.

    13. [13]

      PETERS-WENDISH P G,SCHIEL B,WENDISH V F,et al.Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum[J].Journal of Molecular Microbiology and Biotechnology,2001,3(2):295-300.

    14. [14]

      XU J Z,YANG H K,ZHANG W G.NADPH metabolism:A survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis[J].Critical Reviews in Biotechno-logy,2018,38(7):1061-1076.

    15. [15]

      SACHLA A J,ALFONSO A J,HELMANN J D.A simplified method of CRISPR-Cas9 engineering of Bacillus subtilis[J].Microbiology Spectrum,2021,9(2):e00754-21.

    16. [16]

      FENG L Y,XU J Z,ZHANG W G.Improved L-leucine production in Corynebacterium glutamicum by optimizing the aminotransferases[J].Molecules,2018,23(9):2102.

    17. [17]

      XU J Z,HAN M,ZHANG J L,et al.Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway[J].Amino Acids,2014,46(9):2165-2175.

    18. [18]

      许金坤,闵伟红,詹冬玲,等.北京棒杆菌AS1.299高丝氨酸脱氢酶突变体D206G的酶学性质表征[J].食品科学,2013,34(7):240-244.

    19. [19]

      孙玉莹.革兰氏阳性菌枯草芽孢杆菌中赖氨酸核糖开关调控机制的研究[D].武汉:武汉大学,2019.

    20. [20]

      魏佳,王壮壮,于海波,等.产L-苏氨酸重组大肠杆菌的构建和发酵性能[J].微生物学通报,2019,46(4):695-706.

    21. [21]

      WANG Y Y,ZHANG F,XU J Z,et al.Improvement of L-leucine production in Corynebacterium glutamicum by altering the redox flux[J].International Journal of Molecular Sciences,2019,20(8):2020.

    22. [22]

      WANG Z W,MA X H,SHEN Z,et al.Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum[J].Bioresource Technology,2011,102(4):3934-3940.

    23. [23]

      XU J Z,RUAN H Z,LIU L M,et al.Overexpression of thermostable meso-diaminopimelate dehydrogenase to redirect diaminopimelate pathway for increasing L-lysine production in Escherichia coli[J].Scientific Reports,2019,9:2423.

  • Cited By

    Periodical cited type(0)

    Other cited types(3)

Article Metrics

Article views(3027) PDF downloads(68) Cited by(3)

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return