JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 38 Issue 3
June 2023
Article Contents
YANG Xuedong, HAN Lijun, WANG Rong, et al. An accurate identification method of bitter peptides based on deep learning[J]. Journal of Light Industry, 2023, 38(3): 11-16. doi: 10.12187/2023.03.002
Citation: YANG Xuedong, HAN Lijun, WANG Rong, et al. An accurate identification method of bitter peptides based on deep learning[J]. Journal of Light Industry, 2023, 38(3): 11-16. doi: 10.12187/2023.03.002 shu

An accurate identification method of bitter peptides based on deep learning

  • Received Date: 2022-12-15
    Accepted Date: 2023-02-15
  • Given that wet experimental methods were no longer adequate for the rapid identification of bitter peptides, this paper presented Bitter-Fus, a novel predictive deep learning method incorporating traditional manual features and pre-trained deep features. Firstly, the method automatically extracted deep learning features from peptide sequences using a pre-trained protein sequence language model, then fed the deep learning features into a long short-term memory (LSTM) network for dimensionality reduction to retain the most relevant features. Finally, the reduced-dimensional deep features were fused with the manual features composed of traditional amino acids composition (AAC) method and passed into the feedforward neural network to construct a prediction model. The validation experimental results showed that the prediction method Bitter-Fus obtained an accuracy precision value of 0.902 and a Mathews correlation coefficient value of 0.805 in a 10-fold cross-validation, and an accuracy precision value of 0.930 and a Mathews correlation coefficient value of 0.862 in the independent dataset test, which significantly outperformed the current state-of-the-art bitter peptide prediction methods BERT4Bitter and iBitter-SCM.
  • 加载中
    1. [1]

      刘桃妹.风味增强肽及其应用研究[J].江苏调味副食品,2014(3):5-8.

    2. [2]

      王知非,林璐,孙伟峰,等.苦味肽和苦味受体研究进展[J].中国调味品,2016,41(9):152-156.

    3. [3]

      毕继才,崔震昆,张令文,等.苦味传递机制与苦味肽研究进展[J].食品工业科技,2018,39(11):333-338.

    4. [4]

      司阔林,李志国,李玲玉,等.干酪苦味肽的形成及脱苦方法研究进展[J].食品工业,2021,42(3):267-271.

    5. [5]

      郭兴峰,魏芳,周祥山,等.苦味肽的形成机理及脱苦技术研究进展[J].食品研究与开发,2017,38(21):207-211.

    6. [6]

      应欣,张连慧,陈卫华.蛋白水解物苦味形成、评价及功能活性的研究进展[J].中国粮油学报,2017,32(12):141-146.

    7. [7]

      邓尚贵,余妙灵,甄兴华,等.苦味肽抗氧化活性延长食品保鲜[J].食品安全质量检测学报,2020,11(2):375-380.

    8. [8]

      杨保军,梁琪,宋雪梅.基于计算机虚拟技术研究牦牛乳硬质干酪苦味肽的抑菌活性差异[J].食品与生物技术学报,2021,40(12):75-87.

    9. [9]

      杨保军,梁琪,宋雪梅.牦牛乳干酪苦味肽ACE抑制活性表征的分子机制[J].中国食品学报,2022,22(5):8-17.

    10. [10]

      CHOU K C.Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes[J].Bioinformatics,2005,21(1):10-19.

    11. [11]

      BO W C,QIN D Y,ZHENG X,et al.Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network[J].Food Research International,2022,153:110974.

    12. [12]

      HUANG W K,SHEN Q C,SU X B,et al.BitterX:A tool for understanding bitter taste in humans[J].Scientific Reports,2016,6(1):23450.

    13. [13]

      ZHANG Y Q,ZHU G C,LI K W,et al.HLAB:Learning the BiLSTM features from the ProtBert-encoded proteins for the class I HLA-peptide binding prediction[J].Briefings in Bioinformatics,2022,23(5):bbac173.

    14. [14]

      WANG Z F,LEI X J. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture[J].Briefings in Bioinformatics,2021,22(6):bbab342.

    15. [15]

      GUO Y C,YAN K,LYU H W,et al.PreTP-EL:Prediction of therapeutic peptides based on ensemble learning[J].Briefings in Bioinformatics,2021,22(6):bbab358.

    16. [16]

      CHAROENKWAN P,YANA J,SCHADUANGRAT N,et al.iBitter-SCM:Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides[J].Genomics,2020,112(4):2813-2822.

    17. [17]

      CHAROENKWAN P,NANTASENAMAT C,HASAN M M,et al.BERT4Bitter:A bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides[J].Bioinformatics,2021,37(17):2556-2562.

    18. [18]

      DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Association for Computational Linguistics.Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Minneapolis,Minnesota:Association for Computational Linguistics,2019:4171-4186.

    19. [19]

      ELNAGGAR A,HEINZINGER M,DALLAGO C,et al.ProtTrans:Towards cracking the language of lifes code through self-supervised deep learning and high performance computing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(10):7112-7127.

    20. [20]

      HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.

    21. [21]

      MINKIEWICZ P,DZIUBA J,IWANIAK A,et al.BIOPEP database and other programs for processing bioactive peptide sequences[J].Journal of AOAC International,2008,91(4):965-980.

    22. [22]

      GAUTAM A,CHAUDHARY K,KUMAR R, et al.In silico approaches for designing highly effective cell penetrating peptides[J].Journal of Translational Medicine,2013,11(1):74.

    23. [23]

      KUMAR R,CHAUDHARY K,CHAUHAN J S,et al.An in silico platform for predicting,screening and designing of antihypertensive peptides[J].Scientific Reports,2015,5(1):12512.

Article Metrics

Article views(3830) PDF downloads(47) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return