JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 38 Issue 3
June 2023
Article Contents
CUI Huapeng, MENG Fan, CHEN Li, et al. Effects of filter ventilation on physical properties and temperature of aerosol in heated tobacco products[J]. Journal of Light Industry, 2023, 38(3): 81-86. doi: 10.12187/2023.03.010
Citation: CUI Huapeng, MENG Fan, CHEN Li, et al. Effects of filter ventilation on physical properties and temperature of aerosol in heated tobacco products[J]. Journal of Light Industry, 2023, 38(3): 81-86. doi: 10.12187/2023.03.010 shu

Effects of filter ventilation on physical properties and temperature of aerosol in heated tobacco products

  • Received Date: 2022-12-30
    Accepted Date: 2023-03-17
  • In order to study the influence of filter ventilation of heated tobacco products on aerosol released, 1#—5# heated tobacco products samples with 0, 2, 4, 6, and 8 ventilation holes set at cavity section of filter were prepared. With an in-situ aerosol characterization method with microprobe sampling and a thermocouple temperature measurement method, the effects of ventilation on the physical properties and temperature of aerosol were investigated and analyzed. The results showed that filter ventilation changed the particle size distribution of aerosol in heated tobacco products. The particle number concentration and volume concentration of aerosol behind ventilation holes in heated tobacco products decreased with the increase of the number of ventilation holes. The reduction rate of particle volume concentration of aerosol from sample 5# was 57.4% compared with sample 1#. Ventilation reduced the count median diameter of aerosol. However, the change of count median diameter with the number of ventilation holes was not significant. The temperature of aerosol in front of and behind ventilation holes decreased with the increase of the number of ventilation holes. The aerosol temperature of sample 5# was 23.0 ℃ lower than that of sample 1#. The particle volume concentration and temperature of aerosol in front of and behind ventilation holes were higher at the central axis and lower along the radial distance.
  • 加载中
    1. [1]

      刘珊,崔凯,曾世通,等.加热非燃烧型烟草制品剖析[J].烟草科技,2016,49(11):56-65.

    2. [2]

      SMITH M R,CLARK B,LUEDICKE F,et al.Evaluation of the tobacco heating system 2.2.Part 1:Description of the system and the scientific assessment program[J].Regulatory Toxicology and Pharmacology,2016,81(Suppl.2):s17-s26.

    3. [3]

      CHRISTOPH W,ARKADIUSZ K K,MARKUS N,et al.Simulation of aerosol formation due to rapid cooling of multispecies vapors[J].Journal of Engineering Mathematics,2018,108(1):171-196.

    4. [4]

      罗玮,谢兰英,秦亮生,等.加热卷烟"降温低截留"滤棒的制备及应用[J].烟草科技,2021,54(3):50-57.

    5. [5]

      郭新月,杨占平,宋晓梅,等.加热不燃烧卷烟烟气降温技术研究进展[J].中国烟草学报,2020,26(3):24-32.

    6. [6]

      马扩彦,刘义波,唐杰,等.聚乳酸膜材料在加热卷烟中的应用研究[J].中国烟草学报,2022,28(3):9-16.

    7. [7]

      LI B,ZHAO L C,YU C F,et al.Effect of machine smoking intensity and filter ventilation level on gas-phase temperature distribution inside a burning cigarette[J].Beitr Tabakforsch Int,2014,26:191-203.

    8. [8]

      BROWNE C L,KEITH C H,ALLEN R E,et al.The effect of filter ventilation on the yield and composition of mainstream and sidestream smokes[J].Beitr Tabakforsch Int,1980,10:81-90.

    9. [9]

      崔华鹏,陈黎,樊美娟,等.电加热卷烟气溶胶物理特性的表征[J].轻工学报,2022,37(2):87-93.

    10. [10]

      崔华鹏,陈黎,樊美娟,等.加热温度对加热卷烟气溶胶物理特性的影响[J].烟草科技,2022,55(4):36-41.

    11. [11]

      王帅鹏,崔华鹏,陈黎,等.抽吸参数对电加热卷烟气溶胶粒数和粒径的影响[J].烟草科技,2022,55(9):44-50.

    12. [12]

      LI B,PANG H R,ZHAO L C,et al.Quantifying gas-phase temperature inside a burning cigarette[J].Industrial & Engineering Chemistry Research,2014,53:7810-7820.

    13. [13]

      崔华鹏,孟璠,陈黎,等.加热卷烟抽吸过程中气溶胶动态分布表征系统的开发[J].烟草科技,2023,56(1):60-65.

    14. [14]

      MENG F,CUI H P,FAN M J,et al.Spatially resolved aerosol characterization during thermal distillation and pyrolysis of tobacco using an in-situ microprobe sampling coupled with fast particulate spectrometer[J].Journal of Analytical and Applied Pyrolysis,2023,170:105911.

    15. [15]

      孟璠,崔华鹏,陈黎,等.不同加热温度加热卷烟抽吸过程中烟芯段气溶胶的动态分布[J].烟草科技,2023,56(3):41-50.

    16. [16]

      王乐,王亚林,李志强,等.电加热卷烟烟芯段温度分布和烟气关键成分逐口变化:第1部分 实验[J].烟草科技,2021,54(3):31-39.

    17. [17]

      吴君章,孔浩辉,沈光林,等."三纸一棒"对卷烟烟气气溶胶粒度分布的影响[J].烟草科技,2013,46(9):58-62
      ,67.

    18. [18]

      VEHKAMEOKI H.Classical nucleation theory in multicomponent systems[M].Berlin:Springer-Verlag,2006.

    19. [19]

      MARKUS N,ARKADIUSZ K K.Modeling aerosol formation in an electrically heated tobacco product[J].International Scholarly and Scientific Research & Innovation,2016,10(4):373-385.

Article Metrics

Article views(3076) PDF downloads(34) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return