JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响

胡新楠 朱成凯 胡中泽 纪执立 金伟平 郭城 沈汪洋

胡新楠, 朱成凯, 胡中泽, 等. 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响[J]. 轻工学报, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002
引用本文: 胡新楠, 朱成凯, 胡中泽, 等. 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响[J]. 轻工学报, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002
HU Xinnan, ZHU Chengkai, HU Zhongze, et al. Effect of blended ratio on microstructure and rheological properties of gelatin-hydroxypropyl methylcellulose aqueous two-phase system[J]. Journal of Light Industry, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002
Citation: HU Xinnan, ZHU Chengkai, HU Zhongze, et al. Effect of blended ratio on microstructure and rheological properties of gelatin-hydroxypropyl methylcellulose aqueous two-phase system[J]. Journal of Light Industry, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002

复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响

    作者简介: 胡新楠(1998—),女,四川省南充市人,武汉轻工大学硕士研究生,主要研究方向为谷物资源开发与利用。E-mail:2550039691@qq.com;
    通讯作者: 纪执立,13430275853@163.com
  • 基金项目: 湖北省重点研发计划项目(2023BBB068)

  • 中图分类号: TS201.7

Effect of blended ratio on microstructure and rheological properties of gelatin-hydroxypropyl methylcellulose aqueous two-phase system

    Corresponding author: JI Zhili, 13430275853@163.com
  • Received Date: 2024-03-01
    Accepted Date: 2024-03-18

    CLC number: TS201.7

  • 摘要: 为改善羟丙基甲基纤维素(Hydroxypropyl Methylcellulose,HPMC)的可加工性和成膜性,使用zein-果胶复合颗粒作为稳定剂,考查明胶(Gelatin,GA)和HPMC的复配比(0∶10、3∶7、4∶6、5∶5、6∶4和10∶0)对GA-HPMC双水相体系微观结构、物理稳定性和流变特性的影响。结果表明:添加质量分数为0.3%的zein-果胶复合颗粒能降低GA与HPMC的相分离速度和相分离程度,这种稳定作用随着HPMC占比的增加(4%~7%)而增强;在zein-果胶复合颗粒质量分数相同的情况下,GA占比小于5%的体系可形成GA为分散相、HPMC为连续相的水包水结构,且随着GA占比的增加,GA-HPMC双水相体系的黏度和凝胶强度均逐渐增加;GA-HPMC双水相体系的胶凝温度(58.90~54.19 ℃)显著低于纯HPMC溶液(61.63 ℃),其胶融温度(28.80~32.23 ℃)的改变与GA占比呈正比。复配比对GA-HPMC双水相体系的稳定性和流变特性的影响呈相反趋势,应根据实际应用需求选择合适的复配比。
    1. [1]

      CHAO Y C,SHUM H C.Emerging aqueous two-phase systems:From fundamentals of interfaces to biomedical applications[J].Chemical Society Reviews,2020,49(1):114-142.

    2. [2]

      WU L,CUI B,DONG D,et al.Effect of mixture microstructure/compatibility on the properties of type-a gelatin-dextran edible films[J].Carbohydrate Polymers,2024,329:121733.

    3. [3]

      BIGI F,HAGHIGHI H,SIESLER H W,et al.Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications[J].Food Hydrocolloids,2021,120:106979.

    4. [4]

      YU X P,YANG Y Y,LIU Q,et al.A hydroxypropyl methylcellulose/hydroxypropyl starch nanocomposite film reinforced with chitosan nanoparticles encapsulating cinnamon essential oil:Preparation and characterization[J].International Journal of Biological Macromolecules,2023,242(1):124605.

    5. [5]

      PRIYADARSHI R,KIM S M,RHIM J W.Pectin/pullulan blend films for food packaging:Effect of blending ratio[J].Food Chemistry,2021,347:129022.

    6. [6]

      CHEN Y,LIAO L S,LIU H S,et al.Effect of annealing on morphologies and performances of hydroxypropyl methylcellulose/hydroxypropyl starch blends[J].Journal of Applied Polymer Science,2020,137(47):e49535.

    7. [7]

      林立松,石文娟,罗曼,等.魔芋葡甘聚糖与羟丙基甲基纤维素复配体系流变行为研究[J].中国食品学报,2023,23(1):100-109.

    8. [8]

      YU X P,LIU Q,JIN Z Y,et al.Preparation and characterization of hydroxypropyl methylcellulose/hydroxypropyl starch composite films reinforced by chitosan nanoparticles of different sizes[J].Materials Today Communications,2023,35:105714.

    9. [9]

      LIU X X,JI Z L,PENG W W,et al.Chemical mapping analysis of compatibility in gelatin and hydroxypropyl methylcellulose blend films[J].Food Hydrocolloids,2020,104:105734.

    10. [10]

      WANG C S,VIRGILIO N,WOOD-ADAMS P,et al.A mechanism for the synergistic gelation properties of gelatin B and xanthan gum aqueous mixtures[J].Carbohydrate Polymers,2017,175:484-492.

    11. [11]

      WONGPHAN P,PANRONG T,HARNKARNSUJARIT N.Effect of different modified starches on physical,morphological,thermomechanical,barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film[J].Food Packaging and Shelf Life,2022,32:100844.

    12. [12]

      CHATSISVILI N,PHILIPSE A P,LOPPINET B,et al.Colloidal zein particles at water-water interfaces[J].Food Hydrocolloids,2017,65:17-23.

    13. [13]

      LI H,WANG T,HU Y L,et al.Designing delivery systems for functional ingredients by protein/polysaccharide interactions[J].Trends in Food Science & Technology,2022,119:272-287.

    14. [14]

      CHEN J F,GUO J,ZHANG T,et al.Slowing the starch digestion by structural modification through preparing zein/pectin particle stabilized water-in-water emulsion[J].Journal of Agricultural and Food Chemistry,2018,66(16):4200-4207.

    15. [15]

      LIU Q Y,CHEN J J,QIN Y,et al.Zein/fucoidan-based composite nanoparticles for the encapsulation of pterostil-bene:Preparation,characterization, physicochemical stability,and formation mechanism[J].International Journal of Biological Macromolecules,2020,158:461-470.

    16. [16]

      CHEN J F,GUO J,LIU S H,et al.Zein particle-stabilized water-in-water emulsion as a vehicle for hydrophilic bioactive compound loading of riboflavin[J].Journal of Agricultural and Food Chemistry,2019,67(35):9926-9933.

    17. [17]

      ZHANG T,GUO J,CHEN J F,et al.Heat stability and rheological properties of concentrated soy protein/egg white protein composite microparticle dispersions[J].Food Hydrocolloids,2020,100:105449.

    18. [18]

      SCHMITT C,SANCHEZ C,LAMPRECHT A,et al.Study of β-lactoglobulin/acacia gum complex coacervation by diffusing-wave spectroscopy and confocal scanning laser microscopy[J].Colloids and Surfaces B:Biointerfaces,2001,20(3):267-280.

    19. [19]

      FAN Z P,CHENG P,GAO Y,et al.Understanding the rheological properties of a novel composite salecan/gellan hydrogels[J].Food Hydrocolloids,2022,123:107162.

    20. [20]

      吴滋灵,周福珍,尹艳,等.超声处理制备小麦醇溶蛋白胶体颗粒Pickering乳液及其表征[J].现代食品科技,2018, 4(7):123-127
      ,257.

    21. [21]

      赵巧丽.紫苏粕蛋白基高内相乳液体系的构建、表征及其性能研究[D].无锡:江南大学,2023.

    22. [22]

      JI Z L,LIU H S,YU L,et al.pH controlled gelation behavior and morphology of gelatin/hydroxypropylmethylcellulose blend in aqueous solution[J].Food Hydrocolloids, 2020,104:105733.

    23. [23]

      XIE Y X,RUAN M J,ZHANG J,et al.Water-in-water Pickering emulsion stabilized by cellulose nanocrystals as space-confined encapsulating systems:From establishment to stability[J].Food Hydrocolloids,2023,141:108719.

    24. [24]

      陈家凤.食品级水水乳液的形成及其功能性输送的研究[D].广州:华南理工大学,2020.

    25. [25]

      BINKS B P,SHI H.Phase inversion of silica particle-stabilized water-in-water emulsions[J].Langmuir,2019,35(11):4046-4057.

    26. [26]

      YAN S Z,REGENSTEIN J M,ZHANG S,et al.Edible particle-stabilized water-in-water emulsions:Stabilization mechanisms,particle types,interfacial design,and practical applications[J].Food Hydrocolloids,2023,140:108665.

    27. [27]

      XIE Y X,RUAN M J,ZHANG J,et al.Water-in-water Pickering emulsion stabilized by cellulose nanocrystals as space-confined encapsulating systems:From establishment to stability[J].Food Hydrocolloids,2023,141:108719.

    28. [28]

      MA Q Y,DU L,YANG Y,et al.Rheology of film-forming solutions and physical properties of Tara gum film reinforced with polyvinyl alcohol (PVA)[J].Food Hydrocolloids,2017,63:677-684.

    29. [29]

      PENG J F,CALABRESE V,VEEN S J,et al.Rheology and microstructure of dispersions of protein fibrils and cellulose microfibrils[J].Food Hydrocolloids,2018,82:196-208.

    30. [30]

      FAN Z P,CHENG P,GAO Y,et al.Understanding the rheological properties of a novel composite salecan/gellan hydrogels[J].Food Hydrocolloids,2022,123:107162.

    31. [31]

      MORALES-CONTRERAS B E,ROSAS-FLORES W,CONTRERAS-ESQUIVEL J C,et al.Pectin from Husk Tomato (Physalis ixocarpa Brot.):Rheological behavior at different extraction conditions[J].Carbohydrate Polymers,2018,179:282-289.

    32. [32]

      CUI T Q,WU Y,NI C L,et al.Rheology and texture analysis of gelatin/dialdehyde starch hydrogel carriers for curcumin controlled release[J].Carbohydrate Polymers,2022,283:119154.

    33. [33]

      纪执立.明胶/羟丙基甲基纤维素共混体系相容性与相行为的研究[D].广州:华南理工大学,2020.

    34. [34]

      WANG Y F,YU L,XIE F W,et al.On the investigation of thermal/cooling-gel biphasic systems based on hydroxypropyl methylcellulose and hydroxypropyl starch[J].Industrial Crops and Products,2018,124:418-428.

    35. [35]

      ZHANG L,WANG Y F,YU L,et al.Rheological and gel properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends[J].Colloid and Polymer Science,2015,293(1):229-237.

    36. [36]

      BAI Y,PENG S,NIU L H,et al.Dynamic viscoelastic properties of Tilapia (Oreochromis niloticus) skin gelatin[J].Journal of Aquatic Food Product Technology,2016,25(6):854-863.

    37. [37]

      PANG Z H,DEETH H,SOPADE P,et al.Rheology,texture and microstructure of gelatin gels with and without milk proteins[J].Food Hydrocolloids,2014,35:484-493.

    1. [1]

      胡新楠朱成凯胡中泽纪执立金伟平郭城沈汪洋 . 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响. 轻工学报, 2024, 0(0): -.

    2. [2]

      吴靖娜林泽烨苏筱张任翔陈晓婷潘南 . 龙须菜渣纤维素/纳米纤维素及其水凝胶的制备和性能研究. 轻工学报, 2024, 39(6): 49-56. doi: 10.12187/2024.06.006

    3. [3]

      胡仙妹于美逍杨雪鹏张展尹献忠 . 木醋杆菌和酿酒酵母混菌发酵对烟用细菌纤维素品质的影响. 轻工学报, 2024, 39(6): 84-92. doi: 10.12187/2024.06.010

    4. [4]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 0(0): -.

    5. [5]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 39(5): 9-17. doi: 10.12187/2024.05.002

    6. [6]

      钟昕怡陈紫麟骆勇汪高玮王周利赵子丹李鸣雷 . 香菇-大球盖菇复合饼干研制及其品质特性分析. 轻工学报, 2024, 39(6): 27-36. doi: 10.12187/2024.06.004

    7. [7]

      倪众楚鹏飞林颖刘玉欣 . 低温长时间热处理过程中氧化和加热对海参体壁胶原纤维结构的影响. 轻工学报, 2024, 0(0): -.

    8. [8]

      倪众楚鹏飞林颖刘玉欣 . 低温长时间热处理过程中氧化和加热对海参体壁胶原纤维结构的影响. 轻工学报, 2025, 40(1): 21-31,57. doi: 10.12187/2025.01.003

    9. [9]

      李杉姜千一孙冰华温纪平王晓曦 . 麦麸糊粉层粉对面团及手抓饼品质特性的影响. 轻工学报, 2024, 0(0): -.

    10. [10]

      游敏付金存王远王震陈思蒙李斌邓国栋吴恺 . 烟丝形态特性与细支卷烟填充密度均匀性关系研究. 轻工学报, 2025, 40(1): 75-81. doi: 10.12187/2025.01.009

    11. [11]

      雷露许浩翔李婷周景瑞齐婧艾蓉罗文菊姜玲玲 . 黄花梨蜂蜜与其他蜜源蜂蜜的抗氧化特性研究. 轻工学报, 2025, 40(1): 32-40. doi: 10.12187/2025.01.004

    12. [12]

      石振兴柴浩浩仵华君朱莹莹么杨 . 内部结构设计对3D打印全麦曲奇饼干品质的影响. 轻工学报, 2024, 39(6): 9-17. doi: 10.12187/2024.06.002

    13. [13]

      许克静刘语煊张展吕晶晶梁淼李瑞丽张峻松陈小龙 . 辊压法全烟梗再造烟叶的制备工艺优化及结构与性能分析. 轻工学报, 2025, 40(1): 64-74. doi: 10.12187/2025.01.008

    14. [14]

      李杉姜千一孙冰华温纪平王晓曦 . 麦麸糊粉层粉对混合粉、面团及手抓饼品质特性的影响. 轻工学报, 2024, 39(6): 18-26. doi: 10.12187/2024.06.003

    15. [15]

      赵悦闫清泉李玲玉司阔林宗学醒 . 钙螯合盐对牛奶-豌豆双蛋白再制干酪品质的影响. 轻工学报, 2024, 39(5): 1-8. doi: 10.12187/2024.05.001

    16. [16]

      李敏贺姗姗杨钰雯 . 改良QuEChERS方法结合超高效液相色谱测定火腿肠中杂环胺类化合物. 轻工学报, 2024, 39(5): 60-70. doi: 10.12187/2024.05.007

    17. [17]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  80
  • 引证文献数: 0
文章相关
  • 通讯作者:  纪执立, 13430275853@163.com
  • 收稿日期:  2024-03-01
  • 修回日期:  2024-03-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
胡新楠, 朱成凯, 胡中泽, 等. 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响[J]. 轻工学报, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002
引用本文: 胡新楠, 朱成凯, 胡中泽, 等. 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响[J]. 轻工学报, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002
HU Xinnan, ZHU Chengkai, HU Zhongze, et al. Effect of blended ratio on microstructure and rheological properties of gelatin-hydroxypropyl methylcellulose aqueous two-phase system[J]. Journal of Light Industry, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002
Citation: HU Xinnan, ZHU Chengkai, HU Zhongze, et al. Effect of blended ratio on microstructure and rheological properties of gelatin-hydroxypropyl methylcellulose aqueous two-phase system[J]. Journal of Light Industry, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002

复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响

    作者简介:胡新楠(1998—),女,四川省南充市人,武汉轻工大学硕士研究生,主要研究方向为谷物资源开发与利用。E-mail:2550039691@qq.com
    通讯作者: 纪执立, 13430275853@163.com
  • 1. 武汉轻工大学 食品科学与工程学院, 湖北 武汉 430023;
  • 2. 大宗粮油精深加工教育部重点实验室, 湖北 武汉 430023
基金项目:  湖北省重点研发计划项目(2023BBB068)

摘要: 为改善羟丙基甲基纤维素(Hydroxypropyl Methylcellulose,HPMC)的可加工性和成膜性,使用zein-果胶复合颗粒作为稳定剂,考查明胶(Gelatin,GA)和HPMC的复配比(0∶10、3∶7、4∶6、5∶5、6∶4和10∶0)对GA-HPMC双水相体系微观结构、物理稳定性和流变特性的影响。结果表明:添加质量分数为0.3%的zein-果胶复合颗粒能降低GA与HPMC的相分离速度和相分离程度,这种稳定作用随着HPMC占比的增加(4%~7%)而增强;在zein-果胶复合颗粒质量分数相同的情况下,GA占比小于5%的体系可形成GA为分散相、HPMC为连续相的水包水结构,且随着GA占比的增加,GA-HPMC双水相体系的黏度和凝胶强度均逐渐增加;GA-HPMC双水相体系的胶凝温度(58.90~54.19 ℃)显著低于纯HPMC溶液(61.63 ℃),其胶融温度(28.80~32.23 ℃)的改变与GA占比呈正比。复配比对GA-HPMC双水相体系的稳定性和流变特性的影响呈相反趋势,应根据实际应用需求选择合适的复配比。

English Abstract

参考文献 (37) 相关文章 (17)

目录

/

返回文章