JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 40 Issue 1
February 2025
Article Contents
ZENG Qiang, QUE Wenhao, XU Bilin, et al. Impact of fouling in the thin-plate cut tobacco dryer on equipment process performance[J]. Journal of Light Industry, 2025, 40(1): 58-63. doi: 10.12187/2025.01.007
Citation: ZENG Qiang, QUE Wenhao, XU Bilin, et al. Impact of fouling in the thin-plate cut tobacco dryer on equipment process performance[J]. Journal of Light Industry, 2025, 40(1): 58-63. doi: 10.12187/2025.01.007 shu

Impact of fouling in the thin-plate cut tobacco dryer on equipment process performance

  • Corresponding author: DONG Wenliang, dwl30586@fjtic.cn
  • Received Date: 2024-02-06
    Accepted Date: 2024-07-23
  • In order to reveal the impact of fouling formation in the thin-plate cut tobacco dryer on the equipment process performance, a thickness detector combined with mathematical statistical analysis and thermal imaging analysis techniques was employed to comparatively analyze the differences in fouling severity, batch-to-batch operational values of process parameters, stability of hot air control, material tail delay characteristics, and steam consumption between two cut tobacco dryers. The results indicated that the average thicknesses of the fouling layers on the walls of the two dryers were 1.5 mm and 0.4 mm, respectively. Dryers with varying degrees of fouling exhibited significant differences in the operational values of material flow rate and process hot air flow rate between batches. Compared to the dryer with a fouling layer thickness of 0.4 mm, when the wall fouling thickness was 1.5 mm, fluctuations in the process hot air flow and temperature of the dryer were increased, resulting in a 30 s increase in material tail delay and a 65 kg/h increase in steam consumption. The adhesion and accumulation of particulate fouling on the walls affected the uniformity of the drum wall temperature distribution, with local temperature extremes reaching 8 ℃.
  • 加载中
    1. [1]

      国家烟草专卖局.卷烟工艺规范[M].北京:中国轻工业出版社,2016.

    2. [2]

      杨波.内插扭带管内二次流对污垢生长规律影响研究[D].兰州:兰州交通大学,2022.

    3. [3]

      XU Z M,JIANG X,LIU Z D,et al.Experimental investigation of microbial fouling and heat mass transfer characteristics on Ni-P modified surface of heat exchanger[J].Journal of Thermal Science,2021,30(1): 271-278.

    4. [4]

      李慧帆,秦琦,李明伟,等.造纸法再造烟叶托网改向辊自动清洗装置的设计与应用[J].纸和造纸,2023,42(3): 9-13.

    5. [5]

      张敬冲,倪琪博,彭帅.输送带清洗装置的设计与应用 [J].设备管理与维修,2023(15): 30-31.

    6. [6]

      王普涛.烟草制丝线回潮筒自动清洗装置[J].机械工程与自动化,2022(1): 136-138,141.

    7. [7]

      秦凯歌,齐毅,林敏.加料机热交换器自动清洗装置的设计与应用[J].机械工程师,2021(7): 79-82.

    8. [8]

      査成,刘银初,肖雪强.浅谈SJ13C型卷烟加料设备清洗系统改进方法[J].中国设备工程,2019(11): 69-70.

    9. [9]

      庞存瑞.SH963C燃油烘丝机清洗装置的研究[J].科技风,2014(8): 61.

    10. [10]

      吴文韬,陶何刚.烘丝机清洗的新方法[J].装备制造技术,2012(11): 151-153.

    11. [11]

      国家质量监督检验检疫总局.磁性基体上非磁性覆盖层 覆盖层厚度测量 磁性法: GB/T 4956—2003[S].北京: 中国标准出版社,2004.

    12. [12]

      罗博文.基于污垢厚度检测的管道污垢热阻研究[D].吉林:东北电力大学,2018.

    13. [13]

      张宁,李楠,杨启容,等.换热面上颗粒污垢生长特性的数值模拟研究[J].青岛大学学报(工程技术版),2018,33(1): 75-79
      ,86.

    14. [14]

      邹泉,陈冉,赵云川,等.基于干燥脱水量的叶丝滚筒干燥加工强度品质校正技术[J].烟草科技,2020,53(7): 70-79.

    15. [15]

      陈杰,陈春雷,徐永虎,等.两段式烘丝机控制模式对烟丝含水率的影响[J].烟草科技,2019,52(9): 91-95.

    16. [16]

      赵鑫海,陈鹏,贺东钰,等.燃料棒相变导热模型开发与污垢传热恶化应用[J].核科学与工程,2023,43(2): 270-277.

    17. [17]

      褚英杰,刘海涛,陈自强,等.沉积物分布规律对蒸汽发生器传热性能的影响分析[J].发电设备,2021,35(6): 391-396.

    18. [18]

      黄思,牛琦锋,陈建勋,等.基于热流耦合的换热器结垢对传热性能的影响分析[J].机械设计与制造,2022(9): 66-70.

    19. [19]

      厉勇,孙全胜,邢兵.重油污垢热阻模型研究及应用进展[J].石油化工设备,2022,51(2): 55-62.

    20. [20]

      阎占宇.风机盘管表面污垢传热效果对空调系统能耗实测与模拟研究[D].沈阳:沈阳建筑大学,2022.

Article Metrics

Article views(83) PDF downloads(7) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return