JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

噬菌体及其衍生物抗食源性致病菌生物被膜的研究进展

孙新城 杜月霞 周军 杜婷婷 秦金梦 张思威 张晓根

孙新城, 杜月霞, 周军, 等. 噬菌体及其衍生物抗食源性致病菌生物被膜的研究进展[J]. 轻工学报, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005
引用本文: 孙新城, 杜月霞, 周军, 等. 噬菌体及其衍生物抗食源性致病菌生物被膜的研究进展[J]. 轻工学报, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005
SUN Xincheng, DU Yuexia, ZHOU Jun, et al. Research progress of bacteriophages and their derivatives against foodborne pathogens biofilms[J]. Journal of Light Industry, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005
Citation: SUN Xincheng, DU Yuexia, ZHOU Jun, et al. Research progress of bacteriophages and their derivatives against foodborne pathogens biofilms[J]. Journal of Light Industry, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005

噬菌体及其衍生物抗食源性致病菌生物被膜的研究进展

    作者简介: 孙新城(1976—),男,山东省巨野县人,郑州轻工业大学教授,博士,主要研究方向为食品微生物。E-mail:biosxc@126.com;
  • 基金项目: 河南省科技攻关项目(242102111045,222102520041,222103810020)

  • 中图分类号: TS201.3;Q93

Research progress of bacteriophages and their derivatives against foodborne pathogens biofilms

  • Received Date: 2024-11-04
    Accepted Date: 2025-03-12

    CLC number: TS201.3;Q93

  • 摘要: 生物被膜(Biofilm,BF)是食源性致病菌在食品加工过程中的主要存在形式,其结构复杂,常规消杀手段难以根除,其防控策略正逐步成为食品领域的研究重点。基于食源性致病菌防控面临的严峻形势及噬菌体作为生物防治剂的潜力,对生物被膜的形成过程及主要调控机制,以及噬菌体及其衍生物、噬菌体与抗生素联用抗食源性致病菌生物被膜的研究进展进行综述。生物被膜的形成过程大致包括可逆粘附阶段、不可逆粘附阶段、早期形成阶段、成熟阶段和分散阶段,群体感应是调控生物被膜形成的主要因素;噬菌体可特异性地靶向食源性致病菌,其衍生物裂解酶和穿孔素能降解细菌的肽聚糖,使细菌细胞裂解并释放子代噬菌体;噬菌体与抗生素联用可产生协同效应,提高食源性致病菌生物被膜的防控效果。未来研究将结合大健康(One Health)理念,从医学、食品、环境等领域解析生物被膜在“人-动物-环境”中的交叉传播机制,优化噬菌体-抗生素联用条件,提升多策略协同防控效果,以更好地保障食品质量与安全。
    1. [1]

      吕阳,尹平,MOHAMED K M,等.噬菌体在食品安全控制中的研究进展[J].食品科学,2018,39(15):240-246.

    2. [2]

      都雪莹,胡欣,冯泽银,等.肉桂醛防控食源性致病菌及其生物被膜的研究进展[J].食品科学,2025,46(1):237-245.

    3. [3]

      GUTIÉRREZ D,RODRÍGUEZ-RUBIO L,MARTÍNEZ B,et al.Bacteriophages as weapons against bacterial biofilms in the food industry[J].Frontiers in Microbiology,2016,7:825.

    4. [4]

      梁馨文,刘振杰,张菊梅,等.高效噬菌体防控食品源单增李斯特菌的研究进展[J].现代食品科技,2024,40(1):304-311.

    5. [5]

      KIM J H,KIM H J,JUNG S J,et al.Characterization of Salmonella spp.-specific bacteriophages and their biocontrol application in chicken breast meat[J].Journal of Food Science,2020,85(3):526-534.

    6. [6]

      王瑜豪,于进洋,王圣睿,等.中药协同抗生素抑制金黄色葡萄球菌生物膜形成研究进展[J].中医学报,2024,39(7):1484-1491.

    7. [7]

      SADEKUZZAMAN M,YANG S,MIZAN M F R,et al.Effectiveness of a phage cocktail as a biocontrol agent against L.monocytogenes biofilms[J].Food Control,2017,78:256-263.

    8. [8]

      李新圃,罗金印,杨峰,等.金黄色葡萄球菌生物膜形成机制及中药调控作用的研究进展[J].中兽医医药杂志,2018,37(6):21-25.

    9. [9]

      GUPTA P V,NAGARSENKER M S.Antimicrobial and antibiofilm activity of enzybiotic against Staphylococcus aureus[M]//MENDEZ-VILAS A.The battle against microbial pathogens:Basic science,technological advances and educational programs.Badajoz:Formatex Research Center,2015:364-372.

    10. [10]

      柴子涵.噬菌体聚糖酶在细菌生物被膜降解中的应用研究[D].青岛:中国海洋大学,2012.

    11. [11]

      RODRIGUES CARNEIRO C,NOGUEIRA LEITE N,DE ABREU OLIVEIRA A V,et al.Mathematical modeling for the prediction of biofilm formation and removal in the food industry as strategy to control microbiological resistance[J].Food Research International,2024,197:115248.

    12. [12]

      张天震,刘伶普,李文超,等.群体感应系统介导细菌生物膜形成的研究进展[J].生物加工过程,2020,18(2):177-183.

    13. [13]

      周彤,周秀娟,龙坤兰,等.肺炎克雷伯菌生物膜治疗的研究进展[J].中国抗生素杂志,2023,48(6):636-642.

    14. [14]

      唐俊妮,史贤明,王红宁,等.细菌生物膜的形成与调控机制[J].生物学杂志,2009,26(2):48-50
      ,53.

    15. [15]

      贾鸣,胡晓梅,胡福泉.细菌生物被膜的耐药机制及控制策略[J].生命的化学,2008,28(3):315-317.

    16. [16]

      WANG Y X,DAI J J,WANG X H,et al.Mechanisms of interactions between bacteria and bacteriophage mediate by quorum sensing systems[J].Applied Microbiology and Biotechnology,2022,106(7):2299-2310.

    17. [17]

      高苗,凌保东.群体感应介导细菌-噬菌体间相互作用的研究进展[J].生物学杂志,2024,41(5):94-99.

    18. [18]

      刘子豪,梁媛,刘丹,等.根除细菌生物被膜的新视角:分散[J].微生物学报,2023,63(12):4451-4466.

    19. [19]

      EKIZ E,TAYYARCAN E K,EVRAN E,et al.Investigation of the effect of bacteriophage cocktail on microbial quality in the case of cold chain breakage:A case study on Escherichia coli contamination in milk[J].Food and Humanity,2023,1:1073-1081.

    20. [20]

      SCHMELCHER M,LOESSNER M J.Bacteriophage endolysins:Applications for food safety[J].Current Opinion in Biotechnology,2016,37:76-87.

    21. [21]

      MONTAÑEZ-IZQUIERDO V Y,SALAS-VÁZQUEZ D I,RODRÍGUEZ-JEREZ J J.Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces[J].Food Control,2012,23(2):470-477.

    22. [22]

      YIN Y J,NI P E,LIU D L,et al.Bacteriophage potential against Vibrio parahaemolyticus biofilms[J].Food Control,2019,98:156-163.

    23. [23]

      BYUN K H,HAN S H,CHOI M W,et al.Biofilm eradication ability of phage cocktail against Listeria monocytogenes biofilms formed on food contact materials and effect on virulence-related genes and biofilm structure[J].Food Research International,2022,157:111367.

    24. [24]

      PIRES D P,MELO L D R,AZEREDO J.Understanding the complex phage-host interactions in biofilm communities[J].Annual Review of Virology,2021,8(1):73-94.

    25. [25]

      GONDIL V S,HARJAI K,CHHIBBER S.Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections[J].International Journal of Antimicrobial Agents,2020,55(2):105844.

    26. [26]

      XI H Y,JI Y L,FU Y,et al.Biological characterization of the phage lysin AVPL and its efficiency against Aerococcus viridans-induced mastitis in a murine model[J].Applied and Environmental Microbiology,2024,90(8):e0046124.

    27. [27]

      GUTIÉRREZ D,FERNÁNDEZ L,RODRÍGUEZ A,et al.Are phage lytic proteins the secret weapon to kill Staphylococcus aureus?[J].mBio,2018,9(1):e01923-17.

    28. [28]

      FURSOV M V,ABDRAKHMANOVA R O,ANTONOVA N P,et al.Antibiofilm activity of a broad-range recombinant endolysin LysECD7:in vitro and in vivo study[J].Viruses,2020,12(5):545.

    29. [29]

      WANG J,LIANG S Y,LU X F,et al.Bacteriophage endolysin Ply113 as a potent antibacterial agent against polymicrobial biofilms formed by enterococci and Staphylococcus aureus[J].Frontiers in Microbiology,2023,14:1304932.

    30. [30]

      GHOSE C,EULER C W.Gram-negative bacterial lysins[J].Antibiotics,2020,9(2):74.

    31. [31]

      NING H Q,LIN H,WANG J X.Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling Vibrio parahaemolyticus and its biofilms[J].International Journal of Food Microbiology,2021,343:109112.

    32. [32]

      ZHANG Y,HUANG H H,DUC H M,et al.Endolysin LysSTG2:Characterization and application to control Salmonella typhimurium biofilm alone and in combination with slightly acidic hypochlorous water[J].Food Microbiology,2021,98:103791.

    33. [33]

      ZHANG S H,CHANG Y,ZHANG Q,et al.Characterization of Salmonella endolysin XFII produced by recombinant Escherichia coli and its application combined with chitosan in lysing Gram-negative bacteria[J].Microbial Cell Factories,2022,21(1):171.

    34. [34]

      刘成,常钦源,范国庆,等.噬菌体裂解酶在畜禽生产中的应用研究进展[J].中国畜牧兽医,2024,51(1):357-364.

    35. [35]

      KIM J,HASAN M,LIAO X Y,et al.Combined antimicrobial activity of short peptide and phage-derived endolysin against antibiotic-resistant Salmonella typhimurium[J].Food Microbiology,2025,125:104642.

    36. [36]

      SHARMA U,VIPRA A,CHANNABASAPPA S.Phage-derived lysins as potential agents for eradicating biofilms and persisters[J].Drug Discovery Today,2018,23(4):848-856.

    37. [37]

      HOLLE M J,MILLER M J.Lytic characterization and application of listerial endolysins PlyP40 and PlyPSA in queso fresco[J].JDS Communications,2021,2(2):47-50.

    38. [38]

      LU R,LIU B H,WU L T,et al.A broad-spectrum phage endolysin (LysCP28)able to remove biofilms and inactivate Clostridium perfringens strains[J].Foods,2023,12(2):411.

    39. [39]

      GUO M Q,FENG C Y,REN J,et al.A novel antimicrobial endolysin,LysPA26,against Pseudomonas aeruginosa[J].Frontiers in Microbiology,2017,8:293.

    40. [40]

      SOONTARACH R,SRIMANOTE P,VORAVUTHIKUN CHAI S P,et al.Antibacterial and anti-biofilm efficacy of endolysin LysAB1245 against a panel of important pathogens[J].Pharmaceuticals,2024,17(2):155.

    41. [41]

      齐心,陈培培,邹玲,等.噬菌体Bp7穿孔素holin的克隆、表达及其活性分析[J].畜牧兽医学报,2017,48(12):2392-2398.

    42. [42]

      WANG Y,YI L,WANG Y X,et al.Isolation,phylogenetic group,drug resistance,biofilm formation,and adherence genes of Escherichia coli from poultry in Central China[J].Poultry Science,2016,95(12):2895-2901.

    43. [43]

      KAMILLA S,JAIN V.Mycobacteriophage D29 holin C-terminal region functionally assists in holin aggregation and bacterial cell death[J].The FEBS Journal,2016,283(1):173-190.

    44. [44]

      SAIER M H Jr,REDDY B L.Holins in bacteria,eukaryotes,and Archaea:Multifunctional xenologues with potential biotechnological and biomedical applications[J].Journal of Bacteriology,2015,197(1):7-17.

    45. [45]

      郑杨,查何.金黄色葡萄球菌生物膜防治研究进展[J].中国医药导报,2021,18(18):32-35.

    46. [46]

      ROBERTS M E, STEWART P S. Modelling protection from antimicrobial agents in biofilms through the formation of persister cells[J].Microbiology, 2005, 151(1): 75-80.

    47. [47]

      惠潇然,黄振华,刘静,等.噬菌体在食品微生物安全领域中应用的局限性和挑战[J].食品科学,2023,44(13):338-345.

    48. [48]

      FERRIOL-GONZÁLEZ C,DOMINGO-CALAP P.Phages for biofilm removal[J].Antibiotics (Basel),2020,9(5):E268.

    49. [49]

      杨佩霓,李庆蓉,李江,等.噬菌体抗细菌生物膜机制及应用策略的研究进展[J].现代检验医学杂志,2024,39(1):199-204.

    50. [50]

      LI X H,HE Y H,WANG Z L,et al.A combination therapy of phages and antibiotics:Two is better than one[J].International Journal of Biological Sciences,2021,17(13):3573-3582.

    51. [51]

      HOLGER D J,EL GHALI A,BHUTANI N,et al.Phage-antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in in vitro static and dynamic biofilm models[J].Antimicrobial Agents and Chemotherapy,2023,67(11):e0057823.

    52. [52]

      TAGLIAFERRI T L,JANSEN M,HORZ H P.Fighting pathogenic bacteria on two fronts:Phages and antibiotics as combined strategy[J].Frontiers in Cellular and Infection Microbiology,2019,9:22.

    53. [53]

      WU Y Q,WANG R,XU M S,et al.A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation[J].Frontiers in Microbiology,2019,10:2768.

    54. [54]

      AGNIESZKA N,SYLWIA B,GRACJA T,et al.Synergistic effects of bacteriophage vB_Eco4-M7 and selected antibiotics on the biofilm formed by shiga toxin-producing Escherichia coli[J].Antibiotics,2022,11(6):712.

    55. [55]

      黄晓英.传统发酵食品中具有抑菌特性乳酸菌的筛选、抑菌机理及其在泡菜发酵中的应用[D].成都:西南民族大学,2022.

    1. [1]

      杨靖刘广昊王琼波韩丽王清福赵志伟李蕾王秋领 . 微生物发酵开发杏果渣香料的研究. 轻工学报, 2024, 0(0): -.

    2. [2]

      蒋纬胡颖朱振元 . 阳荷多糖提取工艺优化及其生物活性研究. 轻工学报, 2025, 40(4): 10-19. doi: 10.12187/2025.04.002

    3. [3]

      黄怡蔡文超余培荣陈炜单春会郭壮王玉荣 . 基于高通量测序和纯培养联用技术的药曲微生物多样性解析. 轻工学报, 2025, 0(0): -.

    4. [4]

      黄怡蔡文超余培荣陈炜单春会郭壮王玉荣 . 基于高通量测序和纯培养联用技术的药曲微生物多样性解析. 轻工学报, 2025, 40(5): 29-36. doi: 10.12187/2025.05.004

    5. [5]

      李浩佳贺诗华曹艺泽郭西玉朱由余赵玮钦黄淳 . 以碳量子点为荧光信号的生物传感器构建及其在金银花 Pb2+ 检测中的应用. 轻工学报, 2024, 0(0): -.

    6. [6]

      吴靖娜林泽烨苏筱张任翔陈晓婷潘南 . 龙须菜渣纤维素/纳米纤维素及其水凝胶的制备和性能研究. 轻工学报, 2024, 39(6): 49-56. doi: 10.12187/2024.06.006

    7. [7]

      望运滔郭秀琴王昱李胜杰栗俊广陈博白艳红 . 甲壳素颗粒与原花青素协同改善低盐条件下肌原纤维蛋白乳液凝胶的凝胶特性研究. 轻工学报, 2025, 40(3): 28-37. doi: 10.12187/2025.03.004

    8. [8]

      兰玉婷张逸飞郭佳慧尚欣欣刘影梁文魁王璐关国平 . 面向皮肤光电治疗术后热损伤护理的凝胶贴膜材料研究. 轻工学报, 2025, 40(1): 120-126. doi: 10.12187/2025.01.014

    9. [9]

      胡仙妹于美逍杨雪鹏张展尹献忠 . 木醋杆菌和酿酒酵母混菌发酵对烟用细菌纤维素品质的影响. 轻工学报, 2024, 39(6): 84-92. doi: 10.12187/2024.06.010

    10. [10]

      杨焕彬曾庆培佘艺敏孙欣王晓庆刘晓丽 . 玉米醇溶蛋白/姜黄素/曲酸复合膜对冷藏鸡肉保鲜效果的影响. 轻工学报, 2025, 40(3): 10-18. doi: 10.12187/2025.03.002

    11. [11]

      胡新楠朱成凯胡中泽纪执立金伟平郭城沈汪洋 . 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响. 轻工学报, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  176
  • 引证文献数: 0
文章相关
  • 收稿日期:  2024-11-04
  • 修回日期:  2025-03-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
孙新城, 杜月霞, 周军, 等. 噬菌体及其衍生物抗食源性致病菌生物被膜的研究进展[J]. 轻工学报, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005
引用本文: 孙新城, 杜月霞, 周军, 等. 噬菌体及其衍生物抗食源性致病菌生物被膜的研究进展[J]. 轻工学报, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005
SUN Xincheng, DU Yuexia, ZHOU Jun, et al. Research progress of bacteriophages and their derivatives against foodborne pathogens biofilms[J]. Journal of Light Industry, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005
Citation: SUN Xincheng, DU Yuexia, ZHOU Jun, et al. Research progress of bacteriophages and their derivatives against foodborne pathogens biofilms[J]. Journal of Light Industry, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005

噬菌体及其衍生物抗食源性致病菌生物被膜的研究进展

    作者简介:孙新城(1976—),男,山东省巨野县人,郑州轻工业大学教授,博士,主要研究方向为食品微生物。E-mail:biosxc@126.com
  • 1. 郑州轻工业大学 食品与生物工程学院, 河南 郑州 450001;
  • 2. 食品生产与安全河南省协同创新中心, 河南 郑州 450001;
  • 3. 中原食品实验室 郑州轻工业大学, 河南 漯河 462300;
  • 4. 冷链食品加工与安全控制教育部重点实验室(培育), 河南 郑州 450001
基金项目:  河南省科技攻关项目(242102111045,222102520041,222103810020)

摘要: 生物被膜(Biofilm,BF)是食源性致病菌在食品加工过程中的主要存在形式,其结构复杂,常规消杀手段难以根除,其防控策略正逐步成为食品领域的研究重点。基于食源性致病菌防控面临的严峻形势及噬菌体作为生物防治剂的潜力,对生物被膜的形成过程及主要调控机制,以及噬菌体及其衍生物、噬菌体与抗生素联用抗食源性致病菌生物被膜的研究进展进行综述。生物被膜的形成过程大致包括可逆粘附阶段、不可逆粘附阶段、早期形成阶段、成熟阶段和分散阶段,群体感应是调控生物被膜形成的主要因素;噬菌体可特异性地靶向食源性致病菌,其衍生物裂解酶和穿孔素能降解细菌的肽聚糖,使细菌细胞裂解并释放子代噬菌体;噬菌体与抗生素联用可产生协同效应,提高食源性致病菌生物被膜的防控效果。未来研究将结合大健康(One Health)理念,从医学、食品、环境等领域解析生物被膜在“人-动物-环境”中的交叉传播机制,优化噬菌体-抗生素联用条件,提升多策略协同防控效果,以更好地保障食品质量与安全。

English Abstract

参考文献 (55) 相关文章 (11)

目录

/

返回文章