JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 40 Issue 5
October 2025
Article Contents
SUN Xincheng, DU Yuexia, ZHOU Jun, et al. Research progress of bacteriophages and their derivatives against foodborne pathogens biofilms[J]. Journal of Light Industry, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005
Citation: SUN Xincheng, DU Yuexia, ZHOU Jun, et al. Research progress of bacteriophages and their derivatives against foodborne pathogens biofilms[J]. Journal of Light Industry, 2025, 40(5): 37-43,54. doi: 10.12187/2025.05.005 shu

Research progress of bacteriophages and their derivatives against foodborne pathogens biofilms

  • Received Date: 2024-11-04
    Accepted Date: 2025-03-12
  • Biofilm (BF) is the predominant form of foodborne pathogenic bacteria during food processing. It has a complex structure, making it difficult for conventional disinfection and sterilization methods to eradicate it. Prevention and control strategies for biofilms are gradually becoming a research focus in the food field. Based on the severe situation in the prevention and control of foodborne pathogenic bacteria and the potential of bacteriophages as biological control agents, this review summarizes the formation process and main regulatory mechanisms of biofilms, as well as the research progress on bacteriophages and their derivatives, and the combination of bacteriophages and antibiotics in targeting biofilms of foodborne pathogenic bacteria. The formation process of biofilm generally includes the reversible adhesion stage, irreversible adhesion stage, early formation stage, maturation stage, and dispersion stage. Quorum sensing is the main factor that regulates biofilm formation. Bacteriophages can specifically target foodborne pathogenic bacteria. Their derivatives, lysin and holin, can degrade the peptidoglycan of bacteria, leading to bacterial cell lysis and the release of progeny bacteriophages. The combination of bacteriophages and antibiotics can produce a synergistic effect and improve the effect of prevention and control of biofilms formed by foodborne pathogenic bacteria. Future research will integrate the One Health concept, investigate the cross-transmission mechanism of biofilms in the “human-animal-environment” system from the fields of medicine, food, and environment, optimize the combination conditions of bacteriophages and antibiotics, and enhance the effect of multi-strategy synergistic prevention and control to better ensure food quality and safety.
  • 加载中
    1. [1]

      吕阳,尹平,MOHAMED K M,等.噬菌体在食品安全控制中的研究进展[J].食品科学,2018,39(15):240-246.

    2. [2]

      都雪莹,胡欣,冯泽银,等.肉桂醛防控食源性致病菌及其生物被膜的研究进展[J].食品科学,2025,46(1):237-245.

    3. [3]

      GUTIÉRREZ D,RODRÍGUEZ-RUBIO L,MARTÍNEZ B,et al.Bacteriophages as weapons against bacterial biofilms in the food industry[J].Frontiers in Microbiology,2016,7:825.

    4. [4]

      梁馨文,刘振杰,张菊梅,等.高效噬菌体防控食品源单增李斯特菌的研究进展[J].现代食品科技,2024,40(1):304-311.

    5. [5]

      KIM J H,KIM H J,JUNG S J,et al.Characterization of Salmonella spp.-specific bacteriophages and their biocontrol application in chicken breast meat[J].Journal of Food Science,2020,85(3):526-534.

    6. [6]

      王瑜豪,于进洋,王圣睿,等.中药协同抗生素抑制金黄色葡萄球菌生物膜形成研究进展[J].中医学报,2024,39(7):1484-1491.

    7. [7]

      SADEKUZZAMAN M,YANG S,MIZAN M F R,et al.Effectiveness of a phage cocktail as a biocontrol agent against L.monocytogenes biofilms[J].Food Control,2017,78:256-263.

    8. [8]

      李新圃,罗金印,杨峰,等.金黄色葡萄球菌生物膜形成机制及中药调控作用的研究进展[J].中兽医医药杂志,2018,37(6):21-25.

    9. [9]

      GUPTA P V,NAGARSENKER M S.Antimicrobial and antibiofilm activity of enzybiotic against Staphylococcus aureus[M]//MENDEZ-VILAS A.The battle against microbial pathogens:Basic science,technological advances and educational programs.Badajoz:Formatex Research Center,2015:364-372.

    10. [10]

      柴子涵.噬菌体聚糖酶在细菌生物被膜降解中的应用研究[D].青岛:中国海洋大学,2012.

    11. [11]

      RODRIGUES CARNEIRO C,NOGUEIRA LEITE N,DE ABREU OLIVEIRA A V,et al.Mathematical modeling for the prediction of biofilm formation and removal in the food industry as strategy to control microbiological resistance[J].Food Research International,2024,197:115248.

    12. [12]

      张天震,刘伶普,李文超,等.群体感应系统介导细菌生物膜形成的研究进展[J].生物加工过程,2020,18(2):177-183.

    13. [13]

      周彤,周秀娟,龙坤兰,等.肺炎克雷伯菌生物膜治疗的研究进展[J].中国抗生素杂志,2023,48(6):636-642.

    14. [14]

      唐俊妮,史贤明,王红宁,等.细菌生物膜的形成与调控机制[J].生物学杂志,2009,26(2):48-50
      ,53.

    15. [15]

      贾鸣,胡晓梅,胡福泉.细菌生物被膜的耐药机制及控制策略[J].生命的化学,2008,28(3):315-317.

    16. [16]

      WANG Y X,DAI J J,WANG X H,et al.Mechanisms of interactions between bacteria and bacteriophage mediate by quorum sensing systems[J].Applied Microbiology and Biotechnology,2022,106(7):2299-2310.

    17. [17]

      高苗,凌保东.群体感应介导细菌-噬菌体间相互作用的研究进展[J].生物学杂志,2024,41(5):94-99.

    18. [18]

      刘子豪,梁媛,刘丹,等.根除细菌生物被膜的新视角:分散[J].微生物学报,2023,63(12):4451-4466.

    19. [19]

      EKIZ E,TAYYARCAN E K,EVRAN E,et al.Investigation of the effect of bacteriophage cocktail on microbial quality in the case of cold chain breakage:A case study on Escherichia coli contamination in milk[J].Food and Humanity,2023,1:1073-1081.

    20. [20]

      SCHMELCHER M,LOESSNER M J.Bacteriophage endolysins:Applications for food safety[J].Current Opinion in Biotechnology,2016,37:76-87.

    21. [21]

      MONTAÑEZ-IZQUIERDO V Y,SALAS-VÁZQUEZ D I,RODRÍGUEZ-JEREZ J J.Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces[J].Food Control,2012,23(2):470-477.

    22. [22]

      YIN Y J,NI P E,LIU D L,et al.Bacteriophage potential against Vibrio parahaemolyticus biofilms[J].Food Control,2019,98:156-163.

    23. [23]

      BYUN K H,HAN S H,CHOI M W,et al.Biofilm eradication ability of phage cocktail against Listeria monocytogenes biofilms formed on food contact materials and effect on virulence-related genes and biofilm structure[J].Food Research International,2022,157:111367.

    24. [24]

      PIRES D P,MELO L D R,AZEREDO J.Understanding the complex phage-host interactions in biofilm communities[J].Annual Review of Virology,2021,8(1):73-94.

    25. [25]

      GONDIL V S,HARJAI K,CHHIBBER S.Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections[J].International Journal of Antimicrobial Agents,2020,55(2):105844.

    26. [26]

      XI H Y,JI Y L,FU Y,et al.Biological characterization of the phage lysin AVPL and its efficiency against Aerococcus viridans-induced mastitis in a murine model[J].Applied and Environmental Microbiology,2024,90(8):e0046124.

    27. [27]

      GUTIÉRREZ D,FERNÁNDEZ L,RODRÍGUEZ A,et al.Are phage lytic proteins the secret weapon to kill Staphylococcus aureus?[J].mBio,2018,9(1):e01923-17.

    28. [28]

      FURSOV M V,ABDRAKHMANOVA R O,ANTONOVA N P,et al.Antibiofilm activity of a broad-range recombinant endolysin LysECD7:in vitro and in vivo study[J].Viruses,2020,12(5):545.

    29. [29]

      WANG J,LIANG S Y,LU X F,et al.Bacteriophage endolysin Ply113 as a potent antibacterial agent against polymicrobial biofilms formed by enterococci and Staphylococcus aureus[J].Frontiers in Microbiology,2023,14:1304932.

    30. [30]

      GHOSE C,EULER C W.Gram-negative bacterial lysins[J].Antibiotics,2020,9(2):74.

    31. [31]

      NING H Q,LIN H,WANG J X.Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling Vibrio parahaemolyticus and its biofilms[J].International Journal of Food Microbiology,2021,343:109112.

    32. [32]

      ZHANG Y,HUANG H H,DUC H M,et al.Endolysin LysSTG2:Characterization and application to control Salmonella typhimurium biofilm alone and in combination with slightly acidic hypochlorous water[J].Food Microbiology,2021,98:103791.

    33. [33]

      ZHANG S H,CHANG Y,ZHANG Q,et al.Characterization of Salmonella endolysin XFII produced by recombinant Escherichia coli and its application combined with chitosan in lysing Gram-negative bacteria[J].Microbial Cell Factories,2022,21(1):171.

    34. [34]

      刘成,常钦源,范国庆,等.噬菌体裂解酶在畜禽生产中的应用研究进展[J].中国畜牧兽医,2024,51(1):357-364.

    35. [35]

      KIM J,HASAN M,LIAO X Y,et al.Combined antimicrobial activity of short peptide and phage-derived endolysin against antibiotic-resistant Salmonella typhimurium[J].Food Microbiology,2025,125:104642.

    36. [36]

      SHARMA U,VIPRA A,CHANNABASAPPA S.Phage-derived lysins as potential agents for eradicating biofilms and persisters[J].Drug Discovery Today,2018,23(4):848-856.

    37. [37]

      HOLLE M J,MILLER M J.Lytic characterization and application of listerial endolysins PlyP40 and PlyPSA in queso fresco[J].JDS Communications,2021,2(2):47-50.

    38. [38]

      LU R,LIU B H,WU L T,et al.A broad-spectrum phage endolysin (LysCP28)able to remove biofilms and inactivate Clostridium perfringens strains[J].Foods,2023,12(2):411.

    39. [39]

      GUO M Q,FENG C Y,REN J,et al.A novel antimicrobial endolysin,LysPA26,against Pseudomonas aeruginosa[J].Frontiers in Microbiology,2017,8:293.

    40. [40]

      SOONTARACH R,SRIMANOTE P,VORAVUTHIKUN CHAI S P,et al.Antibacterial and anti-biofilm efficacy of endolysin LysAB1245 against a panel of important pathogens[J].Pharmaceuticals,2024,17(2):155.

    41. [41]

      齐心,陈培培,邹玲,等.噬菌体Bp7穿孔素holin的克隆、表达及其活性分析[J].畜牧兽医学报,2017,48(12):2392-2398.

    42. [42]

      WANG Y,YI L,WANG Y X,et al.Isolation,phylogenetic group,drug resistance,biofilm formation,and adherence genes of Escherichia coli from poultry in Central China[J].Poultry Science,2016,95(12):2895-2901.

    43. [43]

      KAMILLA S,JAIN V.Mycobacteriophage D29 holin C-terminal region functionally assists in holin aggregation and bacterial cell death[J].The FEBS Journal,2016,283(1):173-190.

    44. [44]

      SAIER M H Jr,REDDY B L.Holins in bacteria,eukaryotes,and Archaea:Multifunctional xenologues with potential biotechnological and biomedical applications[J].Journal of Bacteriology,2015,197(1):7-17.

    45. [45]

      郑杨,查何.金黄色葡萄球菌生物膜防治研究进展[J].中国医药导报,2021,18(18):32-35.

    46. [46]

      ROBERTS M E, STEWART P S. Modelling protection from antimicrobial agents in biofilms through the formation of persister cells[J].Microbiology, 2005, 151(1): 75-80.

    47. [47]

      惠潇然,黄振华,刘静,等.噬菌体在食品微生物安全领域中应用的局限性和挑战[J].食品科学,2023,44(13):338-345.

    48. [48]

      FERRIOL-GONZÁLEZ C,DOMINGO-CALAP P.Phages for biofilm removal[J].Antibiotics (Basel),2020,9(5):E268.

    49. [49]

      杨佩霓,李庆蓉,李江,等.噬菌体抗细菌生物膜机制及应用策略的研究进展[J].现代检验医学杂志,2024,39(1):199-204.

    50. [50]

      LI X H,HE Y H,WANG Z L,et al.A combination therapy of phages and antibiotics:Two is better than one[J].International Journal of Biological Sciences,2021,17(13):3573-3582.

    51. [51]

      HOLGER D J,EL GHALI A,BHUTANI N,et al.Phage-antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in in vitro static and dynamic biofilm models[J].Antimicrobial Agents and Chemotherapy,2023,67(11):e0057823.

    52. [52]

      TAGLIAFERRI T L,JANSEN M,HORZ H P.Fighting pathogenic bacteria on two fronts:Phages and antibiotics as combined strategy[J].Frontiers in Cellular and Infection Microbiology,2019,9:22.

    53. [53]

      WU Y Q,WANG R,XU M S,et al.A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation[J].Frontiers in Microbiology,2019,10:2768.

    54. [54]

      AGNIESZKA N,SYLWIA B,GRACJA T,et al.Synergistic effects of bacteriophage vB_Eco4-M7 and selected antibiotics on the biofilm formed by shiga toxin-producing Escherichia coli[J].Antibiotics,2022,11(6):712.

    55. [55]

      黄晓英.传统发酵食品中具有抑菌特性乳酸菌的筛选、抑菌机理及其在泡菜发酵中的应用[D].成都:西南民族大学,2022.

Article Metrics

Article views(325) PDF downloads(4) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return