JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 40 Issue 5
October 2025
Article Contents
YU Mengya, ZHENG Min, LIU Haijuan and et al. Antimicrobial properties of heterojunction textiles in different application environments[J]. Journal of Light Industry, 2025, 40(5): 55-63. doi: 10.12187/2025.05.007
Citation: YU Mengya, ZHENG Min, LIU Haijuan and et al. Antimicrobial properties of heterojunction textiles in different application environments[J]. Journal of Light Industry, 2025, 40(5): 55-63. doi: 10.12187/2025.05.007 shu

Antimicrobial properties of heterojunction textiles in different application environments

  • Corresponding author: ZHENG Min, zhengmin@suda.edu.cn
  • Received Date: 2024-05-16
    Accepted Date: 2024-09-01
  • To explore the changes in antibacterial performance of heterojunction textiles in different application environments, Escherichia coli was used as representative bacteria to study the antibacterial rate of heterojunction textiles at different temperatures, pH, light intensity and wavelengths by the oscillation method. The results indicated that environmental factors significantly influenced the antibacterial performance of the heterojunction textiles. The bacteriostatic rate basically increased initially and then decreased with rising temperature. Within the pH range of 3.0~8.0, the heterojunction textiles exhibited strong antibacterial activity, peaking at pH 7.5, with acidic conditions being more favorable than alkaline environments. Light intensity significantly affected its antibacterial efficacy, as the bacteriostatic rate under dark conditions was 36 % lower than that at 50 mW/cm2. Additionally, antibacterial effectiveness diminished with increasing wavelength. The heterojunction textiles showed no significant cytotoxicity toward HaCaT cells, and the amounts of released metal elements during oscillation remained below the actually measured levels of metal elements. Compared to untreated polyester fabric, the heterojunction textiles demonstrated significantly enhanced photocatalytic performance. Treated Escherichia coli showed distorted morphology with severe surface depression and significantly increased PI-stained fluorescent spots. After 50 washing cycles, the bacteriostatic rate still reached the AAA level, indicating exceptional antibacterial efficacy and stability.
  • 加载中
    1. [1]

      KHONG M J,SNYDER A M,MAGNATERRA A K,et al.Antimicrobial resistance profile of Escherichia coli isolated from poultry litter[J].Poultry Science,2023,102(1):102305.

    2. [2]

      BOTSA S M,BASAVAIAH K.Fabrication of multifunctional TANI/Cu2O/Ag nanocomposite for environmental abatement[J].Scientific Reports,2020,10:14080.

    3. [3]

      LIU H P,LI J F,LIU X M,et al.Photo-sono interfacial engineering exciting the intrinsic property of herbal nanomedicine for rapid broad-spectrum bacteria killing[J].ACS Nano,2021,15(11):18505-18519.

    4. [4]

      AMBIGADEVI J,SENTHIL KUMAR P,VO D N,et al.Recent developments in photocatalytic remediation of textile effluent using semiconductor based nanostructured catalyst:A review[J].Journal of Environmental Chemical Engineering,2021,9(1):104881.

    5. [5]

      CI H,MA L L,LIU X M,et al.Photo-excited antibacterial poly(ε-caprolactone)@MoS2/ZnS hybrid nanofibers[J].Chemical Engineering Journal,2022,434:134764.

    6. [6]

      LI L L,WANG D P,ZHANG D,et al.Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile[J].Advanced Functional Materials,2021,31(37):2104782.

    7. [7]

      LI J F,MA L L,LI Z Y,et al.Oxygen vacancies-rich heterojunction of Ti3 C2/BiOBr for photo-excited antibacterial textiles[J].Small,2022,18(5):e2104448.

    8. [8]

      WANG Q Q,JI S T,LI S Y,et al.Electrospinning visible light response Bi2MoO6/Ag3PO4 composite photocatalytic nanofibers with enhanced photocatalytic and antibacterial activity[J].Applied Surface Science,2021,569:150955.

    9. [9]

      XU J,YU C Z,WANG S L,et al.Quantitative generation of ROS and their effective photocatalytic antibacterial activity of high-intensity universal P25 network films:The role of ROS[J].Journal of Environmental Chemical Engineering,2023,11(5):110915.

    10. [10]

      NOSAKA Y,NOSAKA A Y.Generation and detection of reactive oxygen species in photocatalysis[J].Chemical Reviews,2017,117(17):11302-11336.

    11. [11]

      周飞,孟久灵,李乐.环境因素对纺织品抗菌性能的影响[C]//第十八届中国科协年会.第十八届中国科协年会论文集:2017年卷.西安:[出版社不详],2016:1-6.

    12. [12]

      陈媛媛,唐晓宁,崔帅,等.活性氧抗菌机理及其研究进展[J].工程科学学报,2023,45(6):967-978.

    13. [13]

      国家质量监督检验检疫总局,中国国家标准化管理委员会.纺织品 抗菌性能的评价 第3部分:振荡法:GB/T 20944.3—2008[S].北京:中国标准出版社,2008.

    14. [14]

      中华人民共和国国家发展和改革委员会.抗菌针织品:FZ/T 73023—2006[S].北京:中国标准出版社,2006.

    15. [15]

      中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.中华人民共和国国家标准 GB/T 16886.5—2017[S].北京:中国标准出版社,2017.

    16. [16]

      MA C C, CHEN S G, WANG C Q, et al. Defect engineering of Cu2-xGa<i>xO/PDINH nanomaterial for significantly improved photocatalytic antibacterial activities[J]. Nanotoday, 2024, 56:102230.

    17. [17]

      LENG J L, LIU X W, XU Y, et al. Evaluation of the alkyl chain length and photocatalytic antibacterial performance of cation g-C3N4[J]. Journal of Materials Chemistry B, 2024, 13:264-273.

    18. [18]

      刘晓丽,郭曹羽,林锴立,等.壳聚糖基抑菌抗氧化活性复合膜的制备及其性能研究[J].轻工学报,2023,38(4):27-36.

    19. [19]

      ZHANG J, SHI R Z, ZHANG Z H, et al. Modulating the large vacancy types of CuS ultrathin nanosheets via defect engineering to improve the photocatalytic antibacterial performance[J].Applied Surface Science, 2023, 639(1):158269.

    20. [20]

      NUR A S M,SULTANA M,MONDAL A,et al.A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV-vis irradiation[J].Journal of Water Process Engineering,2022,47:102728.

    21. [21]

      马占强,郭葳,张凯悦,等.Bi5O7I的制备及光催化抗菌性能研究[J].化学研究与应用,2023,35(2):407-413.

    22. [22]

      ZHENG M,JIANG Y,WANG C,et al.Multifunctional modification polyester with Au@Cu2O-ZnO ternary heterojunction fabricated by in situ polymerization[J].RSC Advances,2024,14(9):6216-6224.

    23. [23]

      KARBASI M,KARIMZADEH F,RAEISSI K,et al.Insights into the photocatalytic bacterial inactivation by flower-like Bi2WO6 under solar or visible light,through in situ monitoring and determination of reactive oxygen species (ROS)[J].Water,2020,12(4):1099.

    24. [24]

      HAO L,JU P,ZHANG Y,et al.Novel plate-on-plate hollow structured BiOBr/Bi2MoO6 p-n heterojunctions:in situ chemical etching preparation and highly improved photocatalytic antibacterial activity[J].Separation and Purification Technology,2022,298:121666.

    25. [25]

      WANG X J,ZHAO Y,LI F T,et al.A chelation strategy for in situ constructing surface oxygen vacancy on{001}facets exposed BiOBr nanosheets[J].Scientific Reports,2016,6:24918.

    26. [26]

      WANG W,FENG H M,LIU J G,et al.A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability[J].Chemical Engineering Journal,2020,386:124116.

    27. [27]

      RAHMATI Z,ABDI J,VOSSOUGHI M,et al.Ag-doped magnetic metal organic framework as a novel nanostructured material for highly efficient antibacterial activity[J].Environmental Research,2020,188:109555.

    28. [28]

      SUBBIAH N,PALANISAMY T.Collagen-supported amino-functionalized Ag@SiO2 core-shell nanoparticles for visible-light-driven water remediation[J].ACS Applied Nano Materials,2022,5(10):14408-14424.

    29. [29]

      张丽华,刘世豪,唐培鑫,等.杜仲叶多糖对植物乳杆菌CICC 20022胆盐耐受性的影响[J].轻工学报,2024,39(3):1-8.

Article Metrics

Article views(320) PDF downloads(1) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return