JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 26 Issue 6
December 2025
Article Contents
XU Yucong, LI Wenzheng, FAN Maomei, et al. Comparative study on antioxidant activity of EGCG and theaflavin based on density functional theory[J]. Journal of Light Industry, 2025, 40(6): 43-53. doi: 10.12187/2025.06.005
Citation: XU Yucong, LI Wenzheng, FAN Maomei, et al. Comparative study on antioxidant activity of EGCG and theaflavin based on density functional theory[J]. Journal of Light Industry, 2025, 40(6): 43-53. doi: 10.12187/2025.06.005 shu

Comparative study on antioxidant activity of EGCG and theaflavin based on density functional theory

  • Corresponding author: BU Ying, buying130@126.com
  • Received Date: 2024-09-05
    Accepted Date: 2025-02-27
    Available Online: 2025-12-15
  • 【Objective】 To investigate the structure-activity relationship between the antioxidant activities of EGCG/theaflavin and their molecular structures. 【Methods】 The molecular structures and corresponding free radicals of the main functional components—epigallocatechin gallate (EGCG) and theaflavin—in green/black tea were theoretically calculated using the density functional theory (DFT) method. The differences in antioxidant activity and solvation effects between EGCG and theaflavin were analyzed based on multiple antioxidant indices. 【Results】 Theaflavin exhibited higher antioxidant activity than EGCG, with a frontier molecular orbital energy gap ΔE(LUMO-HOMO) of 5.67 eV, a bond dissociation energy (BDE) of the C7'—OH phenolic hydroxyl of 321.9 kJ/mol, an ionization potential (IP) of 461.4 kJ/mol, and a spin population of the Cb—OH oxygen atom of 0.218. In non-polar solvents, sequential proton-loss electron transfer (SPLET) is preferred as the dominant reaction mechanism, while in polar solvents, single electron transfer followed by proton transfer (SET-PT) is preferred. The C5'—OH of the B ring may be the active site of EGCG, while the C7'—OH of the A' ring may be that of theaflavin. 【Conclusion】 Theaflavin exhibits stronger antioxidant activity than EGCG, with the position of phenolic hydroxyl groups significantly influencing its activity. The DFT method offers a novel perspective for investigating the antioxidant activity of functional components in tea.
  • 加载中
    1. [1]

      李朝云,邱树毅,班世栋,等.绿茶中表没食子儿茶素没食子酸酯生物活性研究进展[J].中国酿造,2019,38(9):12-18.
      LI Z Y,QIU S Y,BAN S D,et al.Research progress on bioactivity of epigallocatechin gallate in green tea[J].China Brewing,2019,38(9):12-18.

    2. [2]

      闫晓佳,梁秀萍,李思琪,等.表没食子儿茶素没食子酸酯性质、稳定性及其递送体系的研究进展[J].食品科学,2020,41(1):258-266.
      YAN X J,LIANG X P,LI S Q,et al.Advances in the properties, stability and delivery systems of(-)-epigallocatechin-3-gallate:A review[J].Food Science,2020,41(1):258-266.

    3. [3]

      刘昌伟,张梓莹,王俊懿,等.茶黄素生物学活性研究进展[J].食品科学,2022,43(19):318-329.
      LIU C W,ZHANG Z Y,WANG J Y,et al.Progress in research on the bioactivity of theaflavins[J].Food Science,2022,43(19):318-329.

    4. [4]

      谢虹,罗志聪,李熙灿.茶黄素抗氧化化学机制研究[J].食品与机械,2018,34(3):23-26.
      XIE H,LUO Z C,LI X C.Chemical mechanism of antioxidation of theaflavin[J].Food & Machinery,2018,34(3):23-26.

    5. [5]

      AHMAD A,NOSHEEN F,ARSHADM U,et al.Isolation and antioxidant characterization of theaflavin for neuroprotective effect in mice model[J].Food Science & Nutrition,2023,11(6):3485-3496.

    6. [6]

      刘晓慧,揭国良,林康,等.EGCG和茶氨酸对细胞氧化损伤的协同保护和修复作用研究[J].茶叶科学,2014,34(3):239-247.
      LIU X H,JIE G L,LIN K,et al.Research on synergistic protection and repairing effectsof EGCG and theanine in oxidative damaged cells[J].Journal of Tea Science,2014,34(3):239-247.

    7. [7]

      王伟伟,苏威,江和源,等.EGCG乙酰化衍生物清除自由基活性的构效分析[J].食品工业科技,2017,38(7):59-63.
      WANG W W,SU W,JIANG H Y,et al.Analysis on structure-activity of EGCG acetylated derivative to scavenge free radical[J].Science and Technology of Food Industry,2017,38(7):59-63.

    8. [8]

      LEE H J,CHO H S,PARK E,et al.Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis[J].Toxicology,2008,250(2/3):109-115.

    9. [9]

      VAGÁNEK A,RIMAR AČG ÍK J,DROPKOVÁ K,et al.Reaction enthalpies of OH bonds splitting-off in flavonoids:The role of non-polar and polar solvent[J].Computational and Theoretical Chemistry,2014,10(1050):31-38.

    10. [10]

      卢俊,高涵,卢庆华,等.酚酸物质抗氧化性及溶剂化效应的理论计算[J].食品科学,2024,45(7):52-60.
      LU J,GAO H,LU Q H,et al.Theoretical calculation on antioxidative activity and solvation effect of phenolicacids[J].Food Science,2024,45(7):52-60.

    11. [11]

      STEELE V E,KELLOFF G J,BALENTINE D,et al.Comparative chemopreventive mechanisms of green tea,black tea and selected polyphenol extracts measured by in vitro bioassays[J].Carcinogenesis,2000,21(1):63-67.

    12. [12]

      JOVANOVIC S V,HARA Y,STEENKEN S,et al.Antioxidant potential of theaflavins.A pulse radiolysis study[J].Journal of the American Chemical Society,1997,119(23):5337-5343.

    13. [13]

      常瑞,朱秋劲.密度泛函理论在多酚抗氧化机制中的应用[J].山地农业生物学报,2019,38(2):52-60.

    14. [14]

      MAHMOUDI S,DEHKORDI M M,ASGARSHAMSI M H.Density functional theory studies of the antioxidants:A review[J].Journal of Molecular Modeling,2021,27(9):271.

    15. [15]

      KAKKAR R,BADHANI B,BHANDARI M.Density functional theory study of the antioxidant activity of glutathione:Reaction with alloxan and its derivatives[J].Computational and Theoretical Chemistry,2023,1230:114374.

    16. [16]

      HOU Y M,WANG Y X,TAN X F,et al.Investigating the antioxidant efficiency of tea flavonoid derivatives:A density functional theory study[J].International Journal of Molecular Sciences,2025,26(6):2587.

    17. [17]

      KARUNARA THNA B S W,GUNAWARDHANA T K,GAJASINGHE G M S T,et al.Evaluation of antioxidant properties of lycopene isomers using density functional theory[J].Journal of Molecular Modeling,2025,31(7):184.

    18. [18]

      MA P P,WANG Z Z.Density functional theory study on antioxidant activity of three polyphenols[J].Journal of Fluorescence,2023,33(3):933-944.

    19. [19]

      ZHANG N,WU Y L,QIAO M,et al.Structure-antioxidant activity relationships of dendrocandin analogues determined using density functional theory[J].Structural Chemistry,2022,33(3):795-805.

    20. [20]

      FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 16[M].Rev.A.03.Wallingford:Gaussian Inc.,2016.

    21. [21]

      DENNINGTON R,KEITH T A,MILLAM J M.GaussView[M].6th ed.Shawnee Mission:Semichem Inc.,2016.

    22. [22]

      吴莉,齐婧敏,吕庆章.六种花青素类化合物抗氧化活性的DFT研究[J].化学研究与应用,2014,26(7):997-1003.
      WU L,QI J M,LUY Q Z.Density functional theory study on antioxi-dation activity of six anthocyanidins[J].Chemical Research and Application,2014,26(7):997-1003.

    23. [23]

      LU T,CHEN F W.Multiwfn:A multifunctional wavefunction analyzer[J].Journal of Computational Chemistry,2012,33(5):580-592.

    24. [24]

      HUMPHREY W,DALKE A,SCHULTEN K.VMD:Visual molecular dynamics[J].Journal of Molecular Graphics,1996,14(1):33-38.

    25. [25]

      MARKOVIĆ Z,TOŠOVIĆ J,MILENKOVIĆ D,et al.Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents[J].Computational and Theoretical Chemistry,2016,1077:11-17.

    26. [26]

      刘靖丽,于海东,梁艳妮.中药黄芪中黄酮类化合物抗氧化活性的DFT研究[J].化学与生物工程,2019,36(1):36-40.
      LIU J L,YU H D,LIANG Y N.Density functional theory investigation on antioxidant activity of flavonoids from Astragalus [J].Chemistry & Bioengineering,2019,36(1):36-40.

    27. [27]

      MISHRA S,TANDON P,ERAVUCHIRA P J,et al.Vibrational spectroscopy and density functional theory analysis of 3-O-caffeoylquinic acid[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2013,104:358-367.

    28. [28]

      张鑫,杨英杰,吕庆章.4种甘草黄酮类化合物抗氧化活性的密度泛函理论研究[J].计算机与应用化学,2012,29(6):656-660.
      ZHANG X,YANG Y J,LYU Q Z.Density functional theory calculations on antioxidation activity of four flavonesfrom radix glycyrrhizae[J].Computers and Applied Chemistry,2012,29(6):656-660.

    29. [29]

      张鑫,杨英杰,吕庆章.黄芪异黄酮类化合物抗氧化活性的密度泛函理论研究[J].化学研究与应用,2012,24(11):1662-1669.
      ZHANG X,YANG Y J,LYU Q Z.Density functional theory calculations on antioxidation activity of theisoflavone compounds from astragalus[J].Chemical Research and Application,2012,24(11):1662-1669.

    30. [30]

      HUANG Y,RONG C Y,ZHANG R Q,et al.Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory[J].Journal of Molecular Modeling,2017,23(1):3.

    31. [31]

      胡炜彦,于浩飞,张荣平.人参皂苷Rg3对H2O2导致海马神经元损伤的保护作用研究[J].中成药,2014,36(4):670-674.
      HU W Y,YU H F,ZHANG R P.Prorective effect of ginsenoside Rg3 on toxicity of H2O2 to hippocampal neuron[J].Chinese Traditional Patent Medicine,2014,36(4):670-674.

    32. [32]

      ZHOU B,HU X Q,ZHU J J,et al.Release properties of tannic acid from hydrogen bond driven antioxidative cellulose nanofibrous films[J].International Journal of Biological Macromolecules,2016,91:68-74.

    33. [33]

      SHANG Y X,LI X Z,LI Z S,et al.Theoretical study on the radical scavenging activity and mechanism of four kinds of Gnetin molecule[J].Food Chemistry,2022,378:131975.

    34. [34]

      王淳纯,覃小丽,阚建全,等.量子化学计算法比较不同脂肪酸分子的反应活性位点[J].食品科学,2021,42(8):74-80.
      WANG C C,QIN X L,KAN J Q,et al.Comparison of reactive sites of different fatty acid molecules byquantum chemistry calculation[J].Food Science,2021,42(8):74-80.

    35. [35]

      王兰娇,李大婧,张良聪,等.利用密度泛函理论分析蓝莓花色苷抗氧化活性[J].食品科学,2020,41(17):53-59.
      WANG L J,LI D J,ZHANG L C,et al.Analysis of antioxidant activity of blueberry anthocyanins usingdensity functional theory[J].Food Science,2020,41(17):53-59.

    36. [36]

      XUE Y S,ZHENG Y G,AN L,et al.Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins[J].Food Chemistry,2014,151:198-206.

    37. [37]

      ZHENG Y Z,DENG G,CHEN D F,et al.Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives:Effects of the chain length and solvent[J].Food Chemistry,2018,240:323-329.

    38. [38]

      ZHENG Y Z,CHEN D F,DENG G,et al.The antioxidative activity of piceatannol and its different derivatives:Antioxidative mechanism analysis[J].Phytochemistry,2018,156:184-192.

    39. [39]

      MARKOVIĆ S,TOŠOVIĆ J.Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids[J].Food Chemistry,2016,210:585-592.

    40. [40]

      齐婧敏.几种天然黄酮类化合物清除自由基活性的密度泛函理论研究[D].新乡:河南师范大学,2014:47-48. QI J M.Density functional theory calculations on scavenging radicals activity of several natural flavonoids[D].Xinxiang:Henan Normal University,2014:47
      -48.

Article Metrics

Article views(423) PDF downloads(2) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return