基于可调整邻域阈值的DBSCAN算法在应急预案分类管理中的应用
Application of DBSCAN algorithm based on adjustable threshold in the emergency plan classification management
-
摘要: 针对庞大的预案文本资源分类难的问题,将可调整的邻域阈值Eps取代原有的全局Eps,得到了改进的DBSCAN密度聚类算法.以预案文本间的相似度作为聚类基本的度量属性,将改进的DBSCAN算法应用于应急预案分类管理,以去除边界.仿真结果证明该方法不仅不影响预案本来的基础分类方式,而且更易于实现,在一定程度上能够缓解噪音点误识别问题,对提高预案文本的重用性和分类的准确率有一定的参考意义.Abstract: Aiming at large plan texts resource classification problems, adjustable threshold Eps replaced the original global threshold Eps.An improved DBSCAN clustering algorithm based on density was put forward.The similarity between plan texts was taken as measurement attribute. Improved DBSCAN was applied in the field of plan classification to remove the boundary identification error. The simulation results showed that this method not only does not affect the result in basis classification way, but also have certain reference significance to improve accuracy and reusability of classification.
-
-
[1]
刘志勇,耿新青.基于模糊聚类的文本挖掘算法[J].计算机工程,2009,35(5):44.
-
[2]
夏鲁宁,荆继武.SA-DBSCAN:一种自适应基于密度聚类算法[J].中国科学院研究生院学报,2009,26(4):530.
-
[3]
Das S,Abraham A,Konar A.Automatic clustering an improved differential[J].IEEE Transactions on Systems Man and Cybernetics(Part A):Systems and Humans,2008,38(1):218.
-
[4]
Sanjay C,Sun Pei.SLOM:a new measure for local spatial outliers[J].Knowledge and Information Systems, 2006, 9(4):412.
-
[5]
于亚飞,周爱武.一种改进的DBSCAN密度算法[J].计算机技术与发展,2011,21(2):30.
-
[1]
计量
- PDF下载量: 23
- 文章访问数: 756
- 引证文献数: 0