JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 30 Issue 1
January 2015
Article Contents
LI Yang, PEI Xu-ming and HU Ying-jie. Design on fuzzy control system of grain particles transport based on network prediction[J]. Journal of Light Industry, 2015, 30(1): 90-94. doi: 10.3969/j.issn.2095-476X.2015.01.019
Citation: LI Yang, PEI Xu-ming and HU Ying-jie. Design on fuzzy control system of grain particles transport based on network prediction[J]. Journal of Light Industry, 2015, 30(1): 90-94. doi: 10.3969/j.issn.2095-476X.2015.01.019 shu

Design on fuzzy control system of grain particles transport based on network prediction

  • Received Date: 2014-09-14
    Available Online: 2015-01-15
  • It is difficult to establishe accurate mathematical model to realize the closed-loop control,because of the complex nonlinear relationship among the wind speed,pressure loss,feed-gas ratio and other parameters in grain partieles pneumatic transport.To solve this problem,with CXLD50 suction pressure mixed conveying mobile grain sucking machine as the research platform,fuzzy control strategy was put forward with the material flow prediction of BP neural network as feedback loop.The system uses the material flow prediction model based on neural network tools which could quickly and conveniently online measured two-phase flow.After comparing the model output flow of prediction and expectation,it was input to the fuzzy controller for judgement and output.Simulation showed that the system has rapid response,achieving ideal output in 50 s and strong anti-interference ability,keeping deviation stable in ±0.5 kg/s so that the fuzzy control system could improve the signal of off-line measurement feedback lag and raise the stability of transport system.
  • 加载中
    1. [1]

      王泽南,张鹏.临界风速气力输送模糊控制仿真[J].农业机械学报,2003,34(5):116.

    2. [2]

      张英建,朱正泽.基于Elman神经网络的浓相输送模糊控制系统[J].控制系统,2007,23(9):68.

    3. [3]

      范蟠果,杨宵鹏.基于模糊控制的烟丝接种控制系统设计[J].机械与电子,2012(8):48.

    4. [4]

      席爱民.模糊控制技术[M].西安:西安电子科技大学出版社,2008:86-124.

    5. [5]

      李东玉,王睿.基于BP神经网络的阀控铅酸盐蓄电池劣化程度预测[J].郑州轻工业学院学报:自然科学版,2012,27(4):12.

    6. [6]

      赵昀,黄志尧.基于神经网络及机理分析的气力输送粉料质量流量软测量[J].仪器仪表学报,2000,8(21):360.

Article Metrics

Article views(1257) PDF downloads(28) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return