JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

基于Sierpinski carpet模型的多孔介质迂曲度计算

袁培 付云飞 郝亚萍 王建军 吕彦力

袁培, 付云飞, 郝亚萍, 等. 基于Sierpinski carpet模型的多孔介质迂曲度计算[J]. 轻工学报, 2016, 31(5): 69-74. doi: 10.3969/j.issn.2096-1553.2016.5.012
引用本文: 袁培, 付云飞, 郝亚萍, 等. 基于Sierpinski carpet模型的多孔介质迂曲度计算[J]. 轻工学报, 2016, 31(5): 69-74. doi: 10.3969/j.issn.2096-1553.2016.5.012
YUAN Pei, FU Yun-fei, HAO Ya-ping, et al. Calculation of tortuosity porous media based on Sierpinski carpet model[J]. Journal of Light Industry, 2016, 31(5): 69-74. doi: 10.3969/j.issn.2096-1553.2016.5.012
Citation: YUAN Pei, FU Yun-fei, HAO Ya-ping, et al. Calculation of tortuosity porous media based on Sierpinski carpet model[J]. Journal of Light Industry, 2016, 31(5): 69-74. doi: 10.3969/j.issn.2096-1553.2016.5.012

基于Sierpinski carpet模型的多孔介质迂曲度计算

  • 基金项目: 国家自然科学基金项目(51476148,21446011);郑州市科技攻关项目(141PPTGG418)

  • 中图分类号: O351

Calculation of tortuosity porous media based on Sierpinski carpet model

  • Received Date: 2015-09-21
    Accepted Date: 2016-03-06
    Available Online: 2016-09-15

    CLC number: O351

  • 摘要: 基于精确自相似Sierpinski carpet分形模型,通过求解控制体的迂曲度分布函数,研究了平均迂曲度与孔隙率、最小孔隙特征长度和分形维数的函数关系.结果表明:迂曲度与孔隙率服从Γn=-3/2-1/2φ的计算规律;最小孔隙特征长度、分形维数、欧几里得空间维数共同决定了物体内部空间的复杂程度;多孔介质内部流线迂曲度随孔隙率增大而减小,随最小孔隙特征长度、分形维数的减小而增大.
    1. [1]

      MASIS-MELENDEZ F,DEEPAGODA T K K C,De JONGE L W,et al.Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils[J].Journal of Hydrology,2014,512:388.

    2. [2]

      IWANEK M,KRUKOWSKI I,WIDOMSKI M,et al.Effect of the van Genutchen model tortuosity parameter on hydraulic conductivity calculations[M]//PAWLOWSKI A,PAWLOWSKI L,DUDZINSKA M R.Environmental Engineering Ⅲ,Boca Raton:CRC Press,2010:447-454.

    3. [3]

      YANG C,NAKAYAMA A.A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media[J].International Journal of Heat and Mass Transfer,2010,53(15/16):3222.

    4. [4]

      MOLDRUP P,DEEPAGODA T K K C,HAMAMOTO S,et al.Structure-dependent water-induced linear reduction model for predicting gas diffusivity and tortuosity in repacked and intact soil[J].Vadose Zone Journal,2013,12(3):1.

    5. [5]

      BONILLA M R,BHATIA S K.Diffusion in pore networks:effective self-diffusivity and the concept of tortuosity[J].Journal of Physical Chemistry C,2013,117(7):3343.

    6. [6]

      DEEPAGODA T K K C,MOLDRUP P,SCHJONNING P,et al.Variable pore connectivity model linking gas diffusivity and air-phase tortuosity to soil matric potential[J].Vadose Zone Journal,2012,11(1):120.

    7. [7]

      CECEN A,WARGO E A,HANNA A C,et al.3-D microstructure analysis of fuel cell materials:spatial distributions of tortuosity,void size and diffusivity[J].Journal of the Electrochemical Society,2012,159(3):299.

    8. [8]

      ATTIA A M.Effects of petrophysical rock properties on tortuosity factor[J].Journal of Petroleum Science and Engineering,2005,48(3):185.

    9. [9]

      BOUDREAU B P.The diffusive tortuosity of fine-grained unlithified sediments[J].Geochimica ET Cosmochimica Acta,1996,60(16):3139.

    10. [10]

      SEN P,SCALA C,COHEN M.A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads[J].Geophysics,1981,46(5):781.

    11. [11]

      KOPONEN A,KATAJA M,TIMONEN J.Tortuous flow in porous media[J].Physical Review E,1996,54(1):406.

    12. [12]

      KOPONEN A,KATAJA M,TIMONEN J.Permeability and effective porosity of porous media[J].Physical Review E,1997,56(3):3319.

    13. [13]

      Westhuizen J, Du Plessis J P.Quantification of unidirectional fiber bed permeability[J].Journal of Composite Materials,1994,28(7):619.

    14. [14]

      YU B M,LI J H.A geometry model for tortuosity of flow path in porous media[J].Chinese Physics Letters,2004,21(8):1569.

    15. [15]

      WU M J,YU B M,ZHANG B,et al.A geometry model for tortuosity of streamtubes in porous media with spherical particles[J].Chinese Physics Letters,2005,22(6):1464.

    16. [16]

      YUN M,YU B,XU P,et al.Geometrical models for tortuosity of streamlines in three-dimensional porous media[J].The Canadian Journal of Chemical Engineering,2006,84(3):301.

    17. [17]

      KOU J L,TANG X M,ZHANG H Y,et al.Tortuosity for streamlines in porous media[J].Chinese Physics B,2012,21(4):364.

    18. [18]

      郁伯铭.多孔介质输运性质的分形分析研究进展[J].力学进展,2003(3):333.

    19. [19]

      陈永平,施明恒.基于分形理论的多孔介质导热系数研究[J].工程热物理学报,1999(5):608.

    20. [20]

      LI J H,YU B M.Tortuosity of flow paths through a Sierpinski Carpet[J].Chinese Physics Letters,2011,28(3):1.

    21. [21]

      DULLIEN F.Porous media:fluid transport and pore structure[M].New York:Academic Press,1979.

    22. [22]

      MANDELBROT B B.The fractal geometry of nature[M].New York:W H Freeman and Company,1982.

    1. [1]

      陈昆黄福利吴承澄谢一飞李凯斌柳胜耀戚祖强唐伟 . 高发射率发热针对加热卷烟温度及气溶胶释放的影响. 轻工学报, 2024, 0(0): -.

    2. [2]

      陈昆黄福利吴承澄谢一飞李凯斌柳胜耀戚祖强唐伟 . 高发射率发热针对加热卷烟温度及气溶胶释放的影响. 轻工学报, 2024, 39(6): 108-115. doi: 10.12187/2024.06.013

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  1226
  • 引证文献数: 0
文章相关
  • 收稿日期:  2015-09-21
  • 修回日期:  2016-03-06
  • 刊出日期:  2016-09-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
袁培, 付云飞, 郝亚萍, 等. 基于Sierpinski carpet模型的多孔介质迂曲度计算[J]. 轻工学报, 2016, 31(5): 69-74. doi: 10.3969/j.issn.2096-1553.2016.5.012
引用本文: 袁培, 付云飞, 郝亚萍, 等. 基于Sierpinski carpet模型的多孔介质迂曲度计算[J]. 轻工学报, 2016, 31(5): 69-74. doi: 10.3969/j.issn.2096-1553.2016.5.012
YUAN Pei, FU Yun-fei, HAO Ya-ping, et al. Calculation of tortuosity porous media based on Sierpinski carpet model[J]. Journal of Light Industry, 2016, 31(5): 69-74. doi: 10.3969/j.issn.2096-1553.2016.5.012
Citation: YUAN Pei, FU Yun-fei, HAO Ya-ping, et al. Calculation of tortuosity porous media based on Sierpinski carpet model[J]. Journal of Light Industry, 2016, 31(5): 69-74. doi: 10.3969/j.issn.2096-1553.2016.5.012

基于Sierpinski carpet模型的多孔介质迂曲度计算

  • 郑州轻工业学院 能源与动力工程学院, 河南 郑州 450002
基金项目:  国家自然科学基金项目(51476148,21446011);郑州市科技攻关项目(141PPTGG418)

摘要: 基于精确自相似Sierpinski carpet分形模型,通过求解控制体的迂曲度分布函数,研究了平均迂曲度与孔隙率、最小孔隙特征长度和分形维数的函数关系.结果表明:迂曲度与孔隙率服从Γn=-3/2-1/2φ的计算规律;最小孔隙特征长度、分形维数、欧几里得空间维数共同决定了物体内部空间的复杂程度;多孔介质内部流线迂曲度随孔隙率增大而减小,随最小孔隙特征长度、分形维数的减小而增大.

English Abstract

参考文献 (22) 相关文章 (2)

目录

/

返回文章