魔芋葡甘聚糖基水凝胶的研究进展
Research progress of konjac glucomannan-based hydrogels
-
摘要: 综述了KGM基水凝胶的增强体系及KGM基水凝胶在药物缓释、伤口敷料、生物组织支架等生物医药方面和作为吸附材料在污水处理方面的应用现状,指出具有代表性的新型高强度和高韧性的水凝胶体系为互穿网络水凝胶和双网络水凝胶,二者的主要区别在于是否对聚合物的类型和交联密度有严格的要求;KGM基水凝胶在药物缓释载体、伤口敷料、生物组织支架和吸附剂材料等方面均具有可观的应用潜力.设计合成高强度、高吸水性和降解速度可控的KGM基水凝胶,寻求更多制备功能性KGM基水凝胶的方法,获得具备较佳凝胶时间及优良降解性能、力学特性和吸水功能的KGM基水凝胶材料,为进一步研究KGM功能材料提供理论基础和参考,最终实现其在药物载体、伤口敷料、组织工程等生物医药和重金属的吸附等材料方面的开发与应用,将是未来的研究方向.Abstract: The enhancement systems of KGM-based hydrogels and their applications in biomedical applications such as drug release, wound dressings, biological tissue scaffolds, and as absorbent materials in wastewater treatment were reviewed. It was pointed out, as that the hydrogel system were pointed out,as the representative of novel high-strength and high toughness was an interpenetrating network hydrogel and a double network hydrogel. The main difference between the two was whether there were stringent requirements on the type and cross-linking density of the polymer; KGM-based hydrogels had considerable potential for application in drug delivery vehicles, the wound dressings, biological tissue scaffolds, and adsorbent materials.The fidure study arientation will be designing and synthesizing KGM-based hydrogels with controllable high strength, high water absorbency and degradation rate, and seeking more methods for preparing functional KGM-based hydrogels, obtaining better gelation time, excellent degradation performance, mechanical properties, and water absorption to provide theoretical basis and reference for the further study of KGM functional materials, and ultimately realize its development and application in drug carriers, wound dressings, tissue engineering and other biomedical and heavy metal adsorption materials.
-
Key words:
- konjac glucomannan /
- hydrogel /
- biomedicine /
- adsorption material
-
-
[1]
JANG J,LEE J,SEOL Y J,et al.Improving mechanical properties of alginate hydrogel by reinforcement with ethanol treated polycaprolactone nanofibers[J].Composites Part B:Engineering,2013,45(1):1216.
-
[2]
VASHIST A,SHAHABUDDIN S,GUPTA Y K,et al.Polyol induced interpenetrating networks:Chitosan-methylmethacrylate based biocompatible and pH responsive hydrogels for drug delivery system[J].Journal of Materials Chemistry B,2013,1(2):168.
-
[3]
SPILLER K L,LIU Y,HOLLOWAY J L,et al.A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels:Controlled release for cartilage tissue engineering[J].Journal of Controlled Release,2012,157(1):39.
-
[4]
XIANG S,QIAN W,LI T,et al.Hierarchical structural double network hydrogel with high strength,toughness,and good recoverability[J].New Journal of Chemistry,2017,41(23):14397.
-
[5]
AL-GHAZZEWI F,ELAMIR A,TESTER R,et al.Effect of depolymerised konjac glucomannan on wound healing[J].Bioactive Carbohydrates & Dietary Fibre,2015,5(2):125.
-
[6]
YI Y,LIN W,JIE P,et al.A review of the development of properties and structures based on konjac glucomannan as functional materials[J].Chinese Journal of Structural Chemistry,2017,36(2):346.
-
[7]
LIU J,ZHANG L,HU W,et al.Preparation of konjac glucomannan-based pulsatile capsule for colonic drug delivery system and its evaluation in vitro and in vivo[J].Carbohydrate Polymers,2012,87(1):377.
-
[8]
NIU C,WU W,WANG Z,et al.Adsorption of heavy metal ions from aqueous solution by crosslinked carboxymethyl konjac glucomannan[J].Journal of Hazardous Materials,2007,141(1):209.
-
[9]
LUAN J,WU K,LI C,et al.pH-sensitive drug delivery system based on hydrophobic modified konjac glucomannan[J].Carbohydrate Polymers,2017,171:9.
-
[10]
KATSURAYA K,OKUYAMA K,HATANAKA K,et al.Constitution of konjac glucomannan:Chemical analysis and 13 C NMR spectroscopy[J].Carbohydrate Polymers,2003,53(2):183.
-
[11]
王恒洲.魔芋葡甘聚糖薄膜和海绵材料的制备及性能研究[D].武汉:武汉纺织大学,2013.
-
[12]
庞杰,吴春华,温成荣,等.魔芋葡甘聚糖凝胶研究进展及其问题[J].中国食品学报,2011,11(9):181.
-
[13]
LUO X,HE P,LIN X.The mechanism of sodium hydroxide solution promoting the gelation of Konjac glucomannan (KGM)[J].Food Hydrocolloids,2013,30(1):92.
-
[14]
ZHAO Y,NAKAJIMA T,YANG J J,et al.Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels[J].Advanced Materials,2014,26(3):436.
-
[15]
LIU Y Y,FAN X D,WEI B R,et al.pH-responsive amphiphilic hydrogel networks with IPN structure:A strategy for controlled drug release[J].International Journal of Pharmaceutics,2006,308(1/2):205.
-
[16]
SINGHA N R R,KARMAKAR M,MAHAPATRA M,et al.Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for mere/synergistic superadsorption of dyes/M(Ⅱ):Comprehensive determination of physicochemical changes in loaded hydrogels[J].Polymer Chemistry,2017,8(20):3211.
-
[17]
何银亭,詹秀环,田博士,等.聚丙烯酸/聚乙烯醇互穿网络水凝胶制备及其对结晶紫的控制释放性能的研究[J].化工技术与开发,2010(11):13.
-
[18]
ILAVSKY M,MAMYTBEKOV G,HANYKOVá L,et al.Phase transition in swollen gels 31.Swelling and mechanical behaviour of interpenetrating networks composed of poly(1-vinyl-2-pyrrolidone) and polyacrylamide in water/acetone mixtures[J].European Polymer Journal,2002,38(5):875.
-
[19]
XU Q,HUANG W,JIANG L,et al.KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release[J].Carbohydrate Polymers,2013,97(2):565.
-
[20]
LI Z,SU Y,HAQ M A,et al.Konjac glucomannan/polyacrylamide bicomponent hydrogels:Self-healing originating from semi-interpenetrating network[J].Polymer,2016,103:146.
-
[21]
GONG J P,KATSUYAMA Y,KUROKAWA T,et al.Double-network hydrogels with extremely high mechanical strength[J].Advanced Materials,2003,15(14):1155.
-
[22]
CHEN Q,CHEN H,ZHU L,et al.Fundamentals of double network hydrogels[J].Journal of Materials Chemistry B,2015,3(18):3654.
-
[23]
HARAGUCHI K,TAKEHISA T.Nanocomposite hydrogels:A unique organic & ndash;inorganic network structure with extraordinary mechanical,optical,and swelling/De-swelling properties[J].Advanced Materials,2002,14(16):1120.
-
[24]
GONG J P.Why are double network hydrogels so tough?[J].Soft Matter,2010,6(12):2583.
-
[25]
王茹,王永鑫,陈重一.不同体系的双网络水凝胶及其增强机理[J].材料导报,2015,29(23):41.
-
[26]
HAQUE M A,KUROKAWA T,GONG J P.Super tough double network hydrogels and their application as biomaterials[J].Polymer,2012,53(9):1805.
-
[27]
LI Z,SU Y,XIE B,et al.A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped[J].Journal of Materials Chemistry B,2015,3(9):1769.
-
[28]
CHEN Q,ZHU L,ZHAO C,et al.A robust,one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide[J].Advanced Materials,2013,25(30):4171.
-
[29]
LIU M,FAN J,WANG K,et al.Synthesis,characterization,and evaluation of phosphated cross-linked konjac glucomannan hydrogels for colon-targeted drug delivery[J].Drug Delivery,2007,14(6):397.
-
[30]
GUPTA K C,RAVIKUMAR M N.Drug release behavior of beads and microgranules of chitosan[J].Biomaterials,2000,21(11):1115.
-
[31]
TAKKA S,ACARTURK F.Calcium alginate microparticles for oral administration I:Effect of sodium alginate type on drug release and drug entrapment efficiency[J].Journal of Microencapsulation,2007,16(3):275.
-
[32]
SOPPIRNATH K S,AMINABHAVI T M.Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application[J].European Journal of Pharmaceutics & Biopharmaceutics,2002,53(1):87.
-
[33]
MI F L,KUAN C Y,SHYU S S,et al.The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release[J].Carbohydrate Polymers,2000,41(4):389.
-
[34]
WANG J,LIU C,SHUAI Y,et al.Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels[J].Colloids & Surfaces B Biointerfaces,2014,113(13):223.
-
[35]
WANG L,JIANG Y,LIN Y,et al.Rheological properties and formation mechanism of DC electric fields induced konjac glucomannan-tungsten gels[J].Carbohydrate Polymers,2016,142:293.
-
[36]
HUANG X,ZHANG Y,ZHANG X,et al.Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing[J].Materials Science & Engineering(C),2013,33(8):4816.
-
[37]
FAN L,YI J,TONG J,et al.Preparation and characterization of oxidized konjac glucomannan/carboxymethyl chitosan/graphene oxide hydrogel[J].International Journal of Biological Macromolecules,2016,91:358.
-
[38]
SHAHBUDDIN M,BULLOCK A J,MACNEIL S,et al.Glucomannan-poly(N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing[J].Journal of Materials Chemistry B,2014,2(6):727.
-
[39]
温辉高,易嘉琰,肖瑶,等.壳聚糖季铵盐/氧化魔芋葡甘露聚糖水凝胶的制备及性能[J].武汉大学学报(理学版),2017(4):305.
-
[40]
FENG Y,LI Q,WU D,et al.A macrophage-activating,injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis[J].Biomaterials,2017,134:128.
-
[41]
TAI Z,YANG J,QI Y,et al.Synthesis of a graphene oxide-polyacrylic acid nanocomposite hydrogel and its swelling and electroresponsive properties[J].Rsc Advances,2013,3(31):12751.
-
[42]
GAN L,SHANG S,HU E,et al.Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange[J].Applied Surface Science,2015,357:866.
-
[43]
CHEN J,ZHANG W,LI X.Adsorption of Cu(Ⅱ) ion from aqueous solutions on hydrogel prepared from Konjac glucomannan[J].Polymer Bulletin,2016,73(7):1965.
-
[1]
计量
- PDF下载量: 25
- 文章访问数: 1537
- 引证文献数: 0