JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

基于稀疏编码的桥梁路面裂缝分类方法研究

李良福 高小小 孙瑞赟 陆铖

李良福, 高小小, 孙瑞赟, 等. 基于稀疏编码的桥梁路面裂缝分类方法研究[J]. 轻工学报, 2018, 33(3): 66-74. doi: 10.3969/j.issn.2096-1553.2018.03.009
引用本文: 李良福, 高小小, 孙瑞赟, 等. 基于稀疏编码的桥梁路面裂缝分类方法研究[J]. 轻工学报, 2018, 33(3): 66-74. doi: 10.3969/j.issn.2096-1553.2018.03.009
LI Liangfu, GAO Xiaoxiao, SUN Ruiyun and et al. Study on bridge floor crack classification method based on sparse coding[J]. Journal of Light Industry, 2018, 33(3): 66-74. doi: 10.3969/j.issn.2096-1553.2018.03.009
Citation: LI Liangfu, GAO Xiaoxiao, SUN Ruiyun and et al. Study on bridge floor crack classification method based on sparse coding[J]. Journal of Light Industry, 2018, 33(3): 66-74. doi: 10.3969/j.issn.2096-1553.2018.03.009

基于稀疏编码的桥梁路面裂缝分类方法研究

  • 基金项目: 国家自然科学基金项目(61573232,61201434,61401263)

  • 中图分类号: TP391.4

Study on bridge floor crack classification method based on sparse coding

  • Received Date: 2018-03-26
    Available Online: 2018-05-15

    CLC number: TP391.4

  • 摘要: 针对桥梁安全和维护问题,提出了一种基于稀疏编码的桥梁路面裂缝分类方法.该方法从网上随机下载图片数据集作为训练集,减少人工标记的工作量,再用相机采集周围的桥梁路面裂缝图片作为测试集和验证集,针对这些高分辨率图像,采用改进的白化主成分分析进行降维,加速特征学习;针对裂缝图像特点,结合自学习算法,从大量未标识的数据集中提取尺度不变特征,经过改进的稀疏编码表示得到特征字典,并用空间金字塔进行池化;最后用线性支持向量机分类器进行分类.验证结果表明,与其他方法相比,本算法获得的分类准确率更高.
    1. [1]

      ORTOLANO M,D'ELIA V,CALLEGARO L. A three-arm current comparator digitally assisted bridge for the comparison of arbitrary four terminal-pair impedances[J].IEEE Transactions on Instrumentation and Measurement,2017,66(6):1496.

    2. [2]

      CHEN Y,MEI T,WANG X J,et al.A bridge crack image detection and classification method based on climbing robot[C]//35th Chinese Control Conference.Piscataway:IEEE,2016:4037-4042.

    3. [3]

      陈瑶,梅涛,王晓杰,等.基于爬壁机器人的桥梁裂缝图像检测与分类方法[J].中国科学技术大学学报,2016,46(9):788.

    4. [4]

      韩洁,李盛阳,张涛.基于深度学习的遥感影像城市扩展方法研究[J].载人航天,2017,23(3):414.

    5. [5]

      石祥斌,房雪键,张德园,等.基于深度学习混合模型迁移学习的图像分类[J].系统仿真学报,2016,28(1):167.

    6. [6]

      徐佳,袁春琦,程圆娥,等.基于主动深度学习的极化SAR图像分类[J].国土资源遥感,2018,30(1):72.

    7. [7]

      夏梦,曹国,汪光亚,等.结合深度学习与条件随机场的遥感图像分类[J].中国图象图形学报,2017,22(9):1289.

    8. [8]

      BERRIEL R F,LOPES A T,DE SOUZA A F.Deep learning-based large-scale automatic satellite crosswalk classification[J].IEEE Geoscience and Remote Sensing Letters,2017,14(9):1513.

    9. [9]

      AFAN A,FAN Y Y. Automatic modulation classification using deep learning based on sparse autoencoders with nonegativity constraints[J].IEEE Signal Processing Letters,2017,24(11):1626.

    10. [10]

      O'SHEA T J,ROY T,CLANCY T C.Over-the-air deep learning based radio signal classification[J].IEEE Journal of Selected Topics Signal Processing,2018,12(1):168.

    11. [11]

      DE S,BRUZZONE L,BHATTACHARYA A,et al.A novel technique based on deep learning and a synthetic target database for classification of urban areas in PoISAR data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Romote Sensing,2018,11(1):154.

    12. [12]

      SANTARA A,MANI K,HATWAR P,et al. BASS net:Band-adaptive spectral-spatial feature learning neural network for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(9):5293.

    13. [13]

      DEY D,CHATTERJEE B,DALAI S,et al. A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy[J].IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(6):3894.

    14. [14]

      GUNDOGDU E,ALATAN A A. Good features to correlate for visual tracking[J].IEEE Transactions on Image Processing,2018,27(5):2526.

    15. [15]

      PEHLEVAN C,CHKLOVSHⅡ D B.Optimization theoty of Hebbian/anti-Hebbian networks for PCA and whitening[C]//Fifty-third Annual Allerton Conference on Communication,Control,and Computing (Allerton).Piscataway:IEEE,2015:1458-1465.

    16. [16]

      QUAN Y H,XU Y,SUN Y P,et al.Sparse coding for classification via discrimination ensemble[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2016:5839-5847.

    17. [17]

      CHUNDI P,SUBRAMANIAM M,SABET K,et al.Analyzing retinal optical coherence tomography images using differential spatial pyramid matching[C]//2016 IEEE 16th International Conference on Bioinformatics and Bioengineering. Piscataway:IEEE,2016:316-323.

    18. [18]

      URICAR M,TIMOFTE R,ROTHE R,et al.Structured output SVM prediction of apparent age,gender and smile from features[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2016:730-738.

    1. [1]

      费致根鲁豪宋晓晓赵鑫昌郭兴肖艳秋 . 基于改进ResNet网络的烟丝输送带洁净度分类模型. 轻工学报, 2024, 39(5): 71-77. doi: 10.12187/2024.05.008

    2. [2]

      张建栋杨忠泮吴恋恋徐大勇朱萍张雯晶堵劲松 . 基于高光谱成像及机器学习的烟叶糖料液施加量判别模型. 轻工学报, 2024, 39(5): 86-94. doi: 10.12187/2024.05.010

    3. [3]

      钟昕怡陈紫麟骆勇汪高玮王周利赵子丹李鸣雷 . 香菇-大球盖菇复合饼干研制及其品质特性分析. 轻工学报, 2024, 39(6): 27-36. doi: 10.12187/2024.06.004

    4. [4]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

    5. [5]

      张丽华陈云莉石勇李顺峰查蒙蒙李昌文纵伟王小媛 . 植物乳杆菌发酵对红枣汁挥发性香气成分的影响. 轻工学报, 2024, 0(0): -.

    6. [6]

      黄朵朵王乐雷萍孙志伟李林洪张智轩黄锋李斌 . 基于烟芯段和滤嘴段耦合的加热卷烟烟气关键成分释放模型构建. 轻工学报, 2024, 0(0): -.

    7. [7]

      黄朵朵王乐雷萍孙志伟李林洪张智轩黄锋李斌 . 基于烟芯段和滤嘴段耦合的加热卷烟烟气关键成分释放模型构建. 轻工学报, 2024, 39(6): 116-126. doi: 10.12187/2024.06.014

  • 加载中
计量
  • PDF下载量:  22
  • 文章访问数:  1117
  • 引证文献数: 0
文章相关
  • 收稿日期:  2018-03-26
  • 刊出日期:  2018-05-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
李良福, 高小小, 孙瑞赟, 等. 基于稀疏编码的桥梁路面裂缝分类方法研究[J]. 轻工学报, 2018, 33(3): 66-74. doi: 10.3969/j.issn.2096-1553.2018.03.009
引用本文: 李良福, 高小小, 孙瑞赟, 等. 基于稀疏编码的桥梁路面裂缝分类方法研究[J]. 轻工学报, 2018, 33(3): 66-74. doi: 10.3969/j.issn.2096-1553.2018.03.009
LI Liangfu, GAO Xiaoxiao, SUN Ruiyun and et al. Study on bridge floor crack classification method based on sparse coding[J]. Journal of Light Industry, 2018, 33(3): 66-74. doi: 10.3969/j.issn.2096-1553.2018.03.009
Citation: LI Liangfu, GAO Xiaoxiao, SUN Ruiyun and et al. Study on bridge floor crack classification method based on sparse coding[J]. Journal of Light Industry, 2018, 33(3): 66-74. doi: 10.3969/j.issn.2096-1553.2018.03.009

基于稀疏编码的桥梁路面裂缝分类方法研究

  • 陕西师范大学 计算机科学学院, 陕西 西安 710119
基金项目:  国家自然科学基金项目(61573232,61201434,61401263)

摘要: 针对桥梁安全和维护问题,提出了一种基于稀疏编码的桥梁路面裂缝分类方法.该方法从网上随机下载图片数据集作为训练集,减少人工标记的工作量,再用相机采集周围的桥梁路面裂缝图片作为测试集和验证集,针对这些高分辨率图像,采用改进的白化主成分分析进行降维,加速特征学习;针对裂缝图像特点,结合自学习算法,从大量未标识的数据集中提取尺度不变特征,经过改进的稀疏编码表示得到特征字典,并用空间金字塔进行池化;最后用线性支持向量机分类器进行分类.验证结果表明,与其他方法相比,本算法获得的分类准确率更高.

English Abstract

参考文献 (18) 相关文章 (7)

目录

/

返回文章