JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 33 Issue 4
July 2018
Article Contents
CONG Peigen, ZHANG Xinyu and ZHANG Shuyi. Common fixed point theorems for a class of twice power type mappings in probabilistic metric spaces and existence of solutions for functional equations[J]. Journal of Light Industry, 2018, 33(4): 101-108. doi: 10.3969/j.issn.2096-1553.2018.04.013
Citation: CONG Peigen, ZHANG Xinyu and ZHANG Shuyi. Common fixed point theorems for a class of twice power type mappings in probabilistic metric spaces and existence of solutions for functional equations[J]. Journal of Light Industry, 2018, 33(4): 101-108. doi: 10.3969/j.issn.2096-1553.2018.04.013 shu

Common fixed point theorems for a class of twice power type mappings in probabilistic metric spaces and existence of solutions for functional equations

  • Received Date: 2018-03-25
    Available Online: 2018-07-15
  • In the space of probabilistic metrics, the existence of common fixed points for a class of twice power type mapping was studied. Under certain conditions, the common fixed\|point theorems of such twice power type mappings were established, and the related results in some references were improved and generalized. And the existence and uniqueness of solutions of a class of functional equations that originated from dynamic programming were discussed, which was of great significance to study the existence and uniqueness of solutions for all kinds of operator equations.
  • 加载中
    1. [1]

      胡新启,刘丁酉.概率度量空间中相容映象的不动点定理[J].武汉汽车工业大学学报,1996,18(5):85.

    2. [2]

      CHO Y J,KANG S M,CHANG S S.Coincidence point theorems for nonlinear hybrid contractions in non-archimedean Menger probabilistic metric spaces[J].Demonstratio Math,1995,28(1):19.

    3. [3]

      张石生.不动点理论及其应用[M].重庆:重庆出版社,1984.

    4. [4]

      ALTMAN M.An integral test for series and generalized contractions[J].Amer Math Monthly,1975,82(8):827.

    5. [5]

      张树义,衣立红,邵颖.Altman型映象的公共不动点[J].杭州师范大学学报(自然科学版),2008,7(6):401.

    6. [6]

      张树义,赵美娜,李丹.关于平方型Altman映象的公共不动点定理[J].江南大学学报(自然科学版),2015,14(4):472.

    7. [7]

      赵美娜,张树义,郑晓迪.2-距离空间中Altman型映象的公共不动点定理[J].井冈山大学学报(自然科学版),2016,37(4):1.

    8. [8]

      赵美娜,张树义,郑晓迪.Ciric-Altman型映射的不动点定理[J].西华大学学报(自然科学版),2016,35(6):79.

    9. [9]

      ZHANG S Y,WANG L,SHIN S H,et al.Common fixed point theorems for a pair of orbitally contraction mapping[J].Fixed Point Theory and Applictions,2003(5):191.

    10. [10]

      林媛,丛培根,张树义.广义C-映象不动点的存在性[J].南通大学学报(自然科学版),2017,16(2):66.

    11. [11]

      林媛,张树义.2-距离空间中带有对称函数的非唯一不动点定理[J].北华大学学报(自然科学版),2017,18(5):572.

    12. [12]

      张树义,宋晓光,栾丹.Φ-压缩映象的公共不动点定理[J].北华大学学报(自然科学版),2014,15(2):167.

    13. [13]

      万美玲,张树义,郑晓迪.2-距离空间中非唯一不动点定理[J].轻工学报,2017,32(4):105.

    14. [14]

      张树义,林媛.Φ-φ-型压缩映象不动点的存在性[J].北华大学学报(自然科学版),2016,17(1):1.

    15. [15]

      张树义,赵美娜,刘冬红.弱相容映射的几个新的公共不动点定理[J].江南大学学报(自然科学版),2015,14(6):852.

    16. [16]

      刘冬红,张树义,郑晓迪.2-距离空间中一类压缩型映象的不动点定理[J].南通大学学报(自然科学版),2016,15(2):68.

    17. [17]

      赵美娜,张树义.关于2-渐近正则映象的一个注记[J].鲁东大学学报(自然科学版),2016,32(3):193.

    18. [18]

      赵美娜,张树义,郑晓迪.2-距离空间中Fisher型映象的公共不动点定理[J].杭州师范大学学报(自然科学版),2016,15(6):632.

    19. [19]

      赵美娜,张树义,郑晓迪.关于非唯一不动点的一个注记[J].杭州师范大学学报(自然科学版),2017,16(3):321.

    20. [20]

      张树义,赵美娜,丛培根.模糊度量空间中Φ-压缩型映象不动点定理及应用[J].南通大学学报(自然科学版),2017,16(3):66.

Article Metrics

Article views(1014) PDF downloads(35) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return