JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

基于CNN和B-LSTM的文本处理模型研究

陈欣 于俊洋 赵媛媛

陈欣, 于俊洋, 赵媛媛. 基于CNN和B-LSTM的文本处理模型研究[J]. 轻工学报, 2018, 33(5): 103-108. doi: 10.3969/j.issn.2096-1553.2018.05.014
引用本文: 陈欣, 于俊洋, 赵媛媛. 基于CNN和B-LSTM的文本处理模型研究[J]. 轻工学报, 2018, 33(5): 103-108. doi: 10.3969/j.issn.2096-1553.2018.05.014
CHEN Xin, YU Junyang and ZHAO Yuanyuan. Research on text processing model based on CNN and B-LSTM[J]. Journal of Light Industry, 2018, 33(5): 103-108. doi: 10.3969/j.issn.2096-1553.2018.05.014
Citation: CHEN Xin, YU Junyang and ZHAO Yuanyuan. Research on text processing model based on CNN and B-LSTM[J]. Journal of Light Industry, 2018, 33(5): 103-108. doi: 10.3969/j.issn.2096-1553.2018.05.014

基于CNN和B-LSTM的文本处理模型研究

    作者简介: 陈欣(1995-),男,河南省商丘市人,河南大学硕士研究生,主要研究方向为深度学习.;
  • 基金项目: 河南省科技厅计划发展项目(182102210229);赛尔网络下一代互联网创新项目(NGII20160204)

  • 中图分类号: TP391.1

Research on text processing model based on CNN and B-LSTM

  • Received Date: 2018-05-24

    CLC number: TP391.1

  • 摘要: 针对文本情感分类准确率不高的问题,在卷积神经网络CNN和栈式双向长短时记忆网络B-LSTM的基础上,提出了一种新的情感分析训练模型CNN-B-LSTM.该模型利用CNN的卷积操作对词向量进行处理,提取词向量的强度特征,再输入到B-LSTM中进行上层建模,对句子进行处理.结果表明:CNN-B-LSTM模型的情感分类准确率比CNN和B-LSTM模型更高,差错率大约分别降低了4%和1%,具有一定的效果优势.
    1. [1]

      王雪娇.基于深度学习的文本情感分析[D].长春:吉林大学,2016.

    2. [2]

      YU H,HATZIVASSILOGLOU V.Towards answering opinion questions:separating facts from opinions and identifying the polarity of opinion sentences[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing,Sapporo:ACL,2003:129.

    3. [3]

      BUDANITSKY A,HIRST G.Evaluating wordnet-based measures of lexical semantic relatedness[J].Computational Linguistics,2006,32(1):13.

    4. [4]

      VELIKOVICH L,BLAIR-GOLDENSOHN S,HANNAN K,et al.The viability of web-derived polarity lexicons[C]//Proceedings of Annual Conference of the North American Chapter of the Association for Computational Linguistics,Los Angeles:NAACL,2010:777.

    5. [5]

      PANG B,LEE L,VAITHYANATHAN S.Thumbs up sentiment classification using machine learning techniques[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing,Philadelphia:ACL,2002:79.

    6. [6]

      KIM S M,HOVY E H.Automatic identification of pro and con reasons in online reviews[C]//Proceedings of the Meeting of the Association for Computational Linguistics,Sydney:ACL 2006:483.

    7. [7]

      READ J,CARROLL J.Weakly supervised techniques for domain-independent sentiment classification[C]//Proceedings of Conference on Information and Knowledge Management,Hongkong:ACL,2009:45.

    8. [8]

      BENGIO Y,DUCHARME R,VINCENT P,et al.A neural probabilistic language model[J].The Journal of Machine Learning Research,2003(3):1137.

    9. [9]

      HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computarion,1997,9(8):1735.

    10. [10]

      COLLOBERT R,WESTON J.A unified architecture for natural language processing:deep neural networks with multitask learning[C]//Proceedings of International Conference on Machine learning,Helsinki:ICML,2008:160.

    11. [11]

      KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of Empirical Methods in Natural Language Processing,Doha:ACL,2014:1746.

    1. [1]

      费致根鲁豪宋晓晓赵鑫昌郭兴肖艳秋 . 基于改进ResNet网络的烟丝输送带洁净度分类模型. 轻工学报, 2024, 39(5): 71-77. doi: 10.12187/2024.05.008

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  1352
  • 引证文献数: 0
文章相关
  • 收稿日期:  2018-05-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
陈欣, 于俊洋, 赵媛媛. 基于CNN和B-LSTM的文本处理模型研究[J]. 轻工学报, 2018, 33(5): 103-108. doi: 10.3969/j.issn.2096-1553.2018.05.014
引用本文: 陈欣, 于俊洋, 赵媛媛. 基于CNN和B-LSTM的文本处理模型研究[J]. 轻工学报, 2018, 33(5): 103-108. doi: 10.3969/j.issn.2096-1553.2018.05.014
CHEN Xin, YU Junyang and ZHAO Yuanyuan. Research on text processing model based on CNN and B-LSTM[J]. Journal of Light Industry, 2018, 33(5): 103-108. doi: 10.3969/j.issn.2096-1553.2018.05.014
Citation: CHEN Xin, YU Junyang and ZHAO Yuanyuan. Research on text processing model based on CNN and B-LSTM[J]. Journal of Light Industry, 2018, 33(5): 103-108. doi: 10.3969/j.issn.2096-1553.2018.05.014

基于CNN和B-LSTM的文本处理模型研究

    作者简介:陈欣(1995-),男,河南省商丘市人,河南大学硕士研究生,主要研究方向为深度学习.
  • 河南大学 软件学院, 河南 开封 475000;
  • 赛尔网络有限公司, 北京 100084
基金项目:  河南省科技厅计划发展项目(182102210229);赛尔网络下一代互联网创新项目(NGII20160204)

摘要: 针对文本情感分类准确率不高的问题,在卷积神经网络CNN和栈式双向长短时记忆网络B-LSTM的基础上,提出了一种新的情感分析训练模型CNN-B-LSTM.该模型利用CNN的卷积操作对词向量进行处理,提取词向量的强度特征,再输入到B-LSTM中进行上层建模,对句子进行处理.结果表明:CNN-B-LSTM模型的情感分类准确率比CNN和B-LSTM模型更高,差错率大约分别降低了4%和1%,具有一定的效果优势.

English Abstract

参考文献 (11) 相关文章 (1)

目录

/

返回文章