JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

ARL中Clean算法的并行化研究

刘慧慧 闻萌莎 钱慎一 吴怀广 张伟伟 李代祎

刘慧慧, 闻萌莎, 钱慎一, 等. ARL中Clean算法的并行化研究[J]. 轻工学报, 2019, 34(2): 88-94. doi: 10.3969/j.issn.2096-1553.2019.02.012
引用本文: 刘慧慧, 闻萌莎, 钱慎一, 等. ARL中Clean算法的并行化研究[J]. 轻工学报, 2019, 34(2): 88-94. doi: 10.3969/j.issn.2096-1553.2019.02.012
LIU Huihui, WEN Mengsha, QIAN Shenyi, et al. Research on parallelization of Clean algorithm in ARL[J]. Journal of Light Industry, 2019, 34(2): 88-94. doi: 10.3969/j.issn.2096-1553.2019.02.012
Citation: LIU Huihui, WEN Mengsha, QIAN Shenyi, et al. Research on parallelization of Clean algorithm in ARL[J]. Journal of Light Industry, 2019, 34(2): 88-94. doi: 10.3969/j.issn.2096-1553.2019.02.012

ARL中Clean算法的并行化研究

    作者简介: 刘慧慧(1994-),女,河南省郑州市人,郑州轻工业大学硕士研究生,主要研究方向为算法优化与算法并行化.;
  • 基金项目: 国家重点研发计划政府间科技合作项目(2016YFE0100600;2016YFE0100300)

  • 中图分类号: TP301

Research on parallelization of Clean algorithm in ARL

  • Received Date: 2018-12-13

    CLC number: TP301

  • 摘要: 针对SKA算法参考库ARL中的去卷积算法运行效率低、无法满足海量数据实时处理的问题,提出了CPU和GPU协同工作模式下的并行化Clean算法.该方法将Clean算法中可以并行计算的步骤利用多线程在GPU上并行执行,将无法并行计算的步骤在CPU上串行执行.验证实验结果表明,在数据逐渐增大的过程中,并行化Clean算法比在CPU上的串行处理运行时间显著减少,当图达到4096像素×4096像素时,可以有10倍的提速.这说明并行化Clean算法在处理海量数据时,能够显著提高运算效率.
    1. [1]

      DABBECH A,FERRARI C,MARY D,et al.Moresane:model reconstruction by synthesis-analysis estimators-a sparse deconvolution algorithm for radio interferometric imaging[J].Astronomy & Astrophysics,2015,576:7.

    2. [2]

      BROEKEMA P C,VAN NIEUWPOORT R V,BAL H E.The square kilometre array science data processor:Preliminary compute platform design[J].Journal of Instrumentation,2015,10(7):14.

    3. [3]

      VAN HEERDEN E,KARASTERGIOU A,ROBERTS S J,et al.New approaches for the real-time detection of binary pulsars with the Square Kilometre Array (SKA)[C]//General Assembly and Scientific Symposium.Piscataway:IEEE,2014:1-4.

    4. [4]

      LA CAMERA A,SCHREIBER L,DIOLAITI E,et al.A method for space-variant deblurring with application to adaptive optics imaging in astronomy[J].Astronomy & Astrophysics,2015,579:1.

    5. [5]

      HÖGBOM J A.Aperture synthesis with a non-regular distribution of interferometer baselines[J].Astronomy and Astrophysics Supplement Series,1974,15:417.

    6. [6]

      BHATNAGAR S,CORNWELL T J.Scale sensitive deconvolution of interferometric images-I:adaptive scale pixel (Asp) decomposition[J].Astronomy & Astrophysics,2004,426(2):747.

    7. [7]

      CORNWELL T J.Multiscale CLEAN deconvo-lution of radio synthesis images[J].IEEE Journal of Selected Topics in Signal Processing,2008,2(5):793.

    8. [8]

      RAU U,CORNWELL T J.A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry[J].Astronomy & Astrophysics,2011,532:71.

    9. [9]

      ZHANG L,ZHANG M,LIU X.The adaptive-loop-gain adaptive-scale Clean deconvolution of radio interferometric images[J].Astrophysics & Space Science,2016,361(5):153.

    10. [10]

      CHENG J,XU L,LU Z,et al.Application of wavelet clean for Mingantu Spectral Radio-heliograph imaging[C]//2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS).Piscataway:IEEE,2017:81.

    11. [11]

      BOSE R.Lean Clean:deconvolution algorithm for radar imaging of contiguous targets[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(3):2190

    12. [12]

      CHEN L,LI L M,WAN G C,et al.A modified Clean algorithm for improving aperture synthesis observations of radio astronomy[C]//Progress in Electromagnetic Research Symposium.Piscataway:IEEE,2016:144.

    13. [13]

      HUANG X,WANG K,HUANG L,et al.GPU implementation for lo-regularized blind motion deblurring[C]//IEEE International Conference on Progress in Informatics and Computing.Piscataway:IEEE,2016:597-601.

    14. [14]

      SHERRY M,SHEARER A.IMPAIR:massively parallel deconvolution on the GPU[C]//Image Processing:Algorithms and Systems XI.[S.l.]:[s.n.],2013,8655(1):84-94.

    15. [15]

      SANDERS J,KANDROT E.CUDA by example[M].Boston:Addison-Wesley Professional,2010:18-25.

    16. [16]

      Nvidia.CUDA C best practices guide[M].American:Nvidia,2012.

  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  1550
  • 引证文献数: 0
文章相关
  • 收稿日期:  2018-12-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
刘慧慧, 闻萌莎, 钱慎一, 等. ARL中Clean算法的并行化研究[J]. 轻工学报, 2019, 34(2): 88-94. doi: 10.3969/j.issn.2096-1553.2019.02.012
引用本文: 刘慧慧, 闻萌莎, 钱慎一, 等. ARL中Clean算法的并行化研究[J]. 轻工学报, 2019, 34(2): 88-94. doi: 10.3969/j.issn.2096-1553.2019.02.012
LIU Huihui, WEN Mengsha, QIAN Shenyi, et al. Research on parallelization of Clean algorithm in ARL[J]. Journal of Light Industry, 2019, 34(2): 88-94. doi: 10.3969/j.issn.2096-1553.2019.02.012
Citation: LIU Huihui, WEN Mengsha, QIAN Shenyi, et al. Research on parallelization of Clean algorithm in ARL[J]. Journal of Light Industry, 2019, 34(2): 88-94. doi: 10.3969/j.issn.2096-1553.2019.02.012

ARL中Clean算法的并行化研究

    作者简介:刘慧慧(1994-),女,河南省郑州市人,郑州轻工业大学硕士研究生,主要研究方向为算法优化与算法并行化.
  • 1. 郑州轻工业大学 计算机与通信工程学院, 河南 郑州 450001;
  • 2. 华东师范大学 计算机科学与软件工程学院, 上海 200241
基金项目:  国家重点研发计划政府间科技合作项目(2016YFE0100600;2016YFE0100300)

摘要: 针对SKA算法参考库ARL中的去卷积算法运行效率低、无法满足海量数据实时处理的问题,提出了CPU和GPU协同工作模式下的并行化Clean算法.该方法将Clean算法中可以并行计算的步骤利用多线程在GPU上并行执行,将无法并行计算的步骤在CPU上串行执行.验证实验结果表明,在数据逐渐增大的过程中,并行化Clean算法比在CPU上的串行处理运行时间显著减少,当图达到4096像素×4096像素时,可以有10倍的提速.这说明并行化Clean算法在处理海量数据时,能够显著提高运算效率.

English Abstract

参考文献 (16)

目录

/

返回文章