JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

酵母菌混合发酵乳清液及其乙醇发酵阶段工艺优化

玛丽娜 敖日格乐 斯木吉德 陶羽

玛丽娜, 敖日格乐, 斯木吉德, 等. 酵母菌混合发酵乳清液及其乙醇发酵阶段工艺优化[J]. 轻工学报, 2024, 39(3): 38-45. doi: 10.12187/2024.03.005
引用本文: 玛丽娜, 敖日格乐, 斯木吉德, 等. 酵母菌混合发酵乳清液及其乙醇发酵阶段工艺优化[J]. 轻工学报, 2024, 39(3): 38-45. doi: 10.12187/2024.03.005
Malina, Aorigele, Simujide and et al. Parameters optimization of ethanol fermentation process in whey liquid fermented by combined yeasts[J]. Journal of Light Industry, 2024, 39(3): 38-45. doi: 10.12187/2024.03.005
Citation: Malina, Aorigele, Simujide and et al. Parameters optimization of ethanol fermentation process in whey liquid fermented by combined yeasts[J]. Journal of Light Industry, 2024, 39(3): 38-45. doi: 10.12187/2024.03.005

酵母菌混合发酵乳清液及其乙醇发酵阶段工艺优化

    作者简介: 玛丽娜(1975—),女,内蒙古自治区科尔沁右翼前旗人,内蒙古农业大学讲师,博士,主要研究方向为微生物及生物工程。E-mail:mln6441@163.com;
  • 基金项目: 内蒙古自治区自然科学基金项目(2022YFHH0091)

  • 中图分类号: TS252.9

Parameters optimization of ethanol fermentation process in whey liquid fermented by combined yeasts

  • Received Date: 2024-04-22
    Accepted Date: 2024-04-30
    Available Online: 2024-06-15

    CLC number: TS252.9

  • 摘要: 选择马克斯克鲁维酵母CGMCC13907(以下简称马氏酵母CGMCC13907)和酿酒酵母AS2.119为混合发酵剂发酵乳清液制备乳清醋,并采用Plackett-Burman Design(PBD)和Box-Behnken Design(BBD)试验优化乙醇发酵阶段的工艺。结果表明:乙醇发酵阶段的最优工艺为马氏酵母CGMCC13907接种量4.0×106 CFU/mL,酿酒酵母AS2.119接种量4.5×106 CFU/mL,发酵时间151 h,发酵温度40.0 ℃,发酵pH值5.6,姜粉用量0.09 g/100 mL,在此条件下,发酵液中乙醇浓度可达8.70 %vol,比优化前增加了56.2%。因此,选用马氏酵母CGMCC13907结合酿酒酵母AS2.119混合发酵乳清液,可有效解决乳清醋制作过程中的乳糖发酵难题,并获得较理想的乙醇浓度。
    1. [1]

      PIRES A F,MARNOTES N G,RUBIO O D,et al.Dairy by-products:A review on the valorization of whey and second cheese whey[J].Foods,2021,10(5):1067.

    2. [2]

      KADAM B,AMBADKAR R,RATHOD K,et al.Health benefits of whey:A brief review[J].International Journal of Livestock Research,2018,8(5):31.

    3. [3]

      王英男,黄艳玲,刘琳,等.乳清液制备细菌纤维素条件的优化[J].中国乳品工业,2019,47(8):26-28
      ,34.

    4. [4]

      KRÓLCZYK J,DAWIDZIUK T,JANISZEWSKA-TURAK E,et al.Use of whey and whey preparations in the food industry:A review[J].Polish Journal of Food and Nutrition Sciences,2016,66(3):157-165.

    5. [5]

      KUMARI A,CHOUDHARY S.Whey proteins as a functional food ingredient[M].Delhi:Narendra Publishing House,2019.

    6. [6]

      岳子尧.乳杆菌抗真菌活性肽粉生产工艺的研究[D].呼和浩特:内蒙古农业大学,2023.

    7. [7]

      秦川.甜型乳清酒发酵菌株的筛选及其应用[D].雅安:四川农业大学,2021.

    8. [8]

      玛丽娜,刘扬,乌兰塔娜,等.乳清醋营养成分分析及功能性评价研究[J].中国调味品,2023,48(9):24-29.

    9. [9]

      KOKKILIGADDA A,BENIWAL A,SAINI P,et al.Utilization of cheese whey using synergistic immobilization of β-galactosidase and Saccharomyces cerevisiae cells in dual matrices[J].Applied Biochemistry and Biotechnology,2016,179(8):1469-1484.

    10. [10]

      SALAZAR Y,VALLE P A,RODRÍGUEZ E,et al.Mechanistic modelling of biomass growth,glucose consumption and ethanol production by Kluyveromyces marxianus in batch fermentation[J].Entropy,2023,25(3):497.

    11. [11]

      FONSECA G G,HEINZLE E,WITTMANN C,et al.The yeast Kluyveromyces marxianus and its biotechnological potential[J].Applied Microbiology and Biotechnology,2008,79(3):339-354.

    12. [12]

      YADAV J S S,BEZAWADA J,YAN S,et al.Permeabilization of Kluyveromyces marxianus with mild detergent for whey lactose hydrolysis and augmentation of mixed culture[J].Applied Biochemistry and Biotechnology,2014,172(6):3207-3222.

    13. [13]

      KARIM A,AIDER M.Bioconversion of electro-activated lactose,whey and whey permeate to produce single cell protein,ethanol,aroma volatiles,organic acids and fat by Kluyveromyces marxianus[J].International Dairy Journal,2022,129:105334.

    14. [14]

      CERNAK P,ESTRELA R,PODDAR S,et al.Engineering Kluyveromyces marxianus as a robust synthetic biology platform host[J].mBio,2018,9(5):e01410-e01418.

    15. [15]

      BANSAL S,OBEROI H S,DHILLON G S,et al.Production of β-galactosidase by Kluyveromyces marxianus MTCC 1388 using whey and effect of four different methods of enzyme extraction on β-galactosidase activity[J].Indian Journal of Microbiology,2008,48(3):337-341.

    16. [16]

      SU M,HU Y,CUI Y,et al.Production of β-glucosidase from okara fermentation using Kluyveromyces marxianus[J].Journal of Food Science and Technology,2021,58(1):366-376.

    17. [17]

      CHUPAZA M H,PARK Y R,KIM S H,et al.Bioethanol production from Azolla filiculoides by Saccharomyces cerevisiae,Pichia stipitis,Candida lusitaniae,and Kluyveromyces marxianus[J].Applied Biochemistry and Biotechnology,2021,193(2):502-514.

    18. [18]

      RUCHALA J,KURYLENKO O O,DMYTRUK K V,et al.Construction of advanced producers of first-and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis,Ogataea polymorpha)[J].Journal of Industrial Microbiology & Biotechnology,2020,47(1):109-132.

    19. [19]

      纪铁鹏.克鲁维酵母和酿酒酵母发酵性能及乳清酒发酵工艺研究[J].内蒙古农业大学学报(自然科学版),2014,35(1):125-130.

    20. [20]

      YAO Z,GUO Y F,WANG H,et al.A highly efficient transcriptome-based biosynthesis of non-ethanol chemicals in Crabtree negative Saccharomyces cerevisiae[J].Biotechnology for Biofuels and Bioproducts,2023,16(1):37.

    21. [21]

      PHONG H X,KLANRIT P,DUNG N T P,et al.High-temperature ethanol fermentation from pineapple waste hydrolysate and gene expression analysis of thermotolerant yeast Saccharomyces cerevisiae[J].Scientific Reports,2022,12(1):13965.

    22. [22]

      YAZICI S O, SAHIN S, BIYIK H H, et al. Optimization of fermentation parameters for high-activity inulinase production and purification from Rhizopus oryzae by Plackett-Burman and Box-Behnken[J]. Journal of Food Science and Technology, 2021, 58(2): 739-751.

    23. [23]

      ABONAMA O,MAHROUS H,BAZ A E,et al.Production of citric acid by Candida lipolytica under fermentation conditions using a plackett-burman design[J].American Journal of Food and Nutrition,2014,2:43-48.

    24. [24]

      OO K S,THAN S,OO T H.Osmotic dehydration of toddy fruit cubes in sugar solution using response surface methodology[J].American Journal of Food Science and Technology,2019,7:175-181.

    25. [25]

      CHEN F L,ZHANG Q,FEI S M,et al.Optimization of ultrasonic circulating extraction of samara oil from Acer saccharum using combination of Plackett-Burman design and Box-Behnken design[J].Ultrasonics Sonochemistry,2017,35(Pt A):161-175.

    26. [26]

      KARMOKER J R,HASAN I,AHMED N,et al.Development and optimization of acyclovir loaded mucoadhesive microspheres by box-behnken design[J].Dhaka University Journal of Pharmaceutical Sciences,2019,18(1):1-12.

    27. [27]

      中华人民共和国国家卫生健康委员会,国家市场监督管理总局.食品安全国家标准 酒和食用酒精中乙醇浓度的测定:GB 5009.225—2023[S].北京:中国标准出版社,2023.

    28. [28]

      中华人民共和国国家卫生健康委员会,国家市场监督管理总局.食品安全国家标准 食品微生物学检验 菌落总数测定:GB 4789.2—2022[S].北京:中国标准出版社,2022.

    29. [29]

      张晗,周利琴,刘志国,等.超临界CO2萃取富硒百香果籽油的工艺研究[J].轻工学报,2023,38(3):46-54.

    1. [1]

      胡仙妹于美逍杨雪鹏张展尹献忠 . 木醋杆菌和酿酒酵母混菌发酵对烟用细菌纤维素品质的影响. 轻工学报, 2024, 39(6): 84-92. doi: 10.12187/2024.06.010

    2. [2]

      张丽华陈云莉石勇李顺峰查蒙蒙李昌文纵伟王小媛 . 植物乳杆菌发酵对红枣汁挥发性香气成分的影响. 轻工学报, 2024, 0(0): -.

    3. [3]

      杨靖刘广昊王琼波韩丽王清福赵志伟李蕾王秋领 . 微生物发酵开发杏果渣香料的研究. 轻工学报, 2024, 0(0): -.

    4. [4]

      卢晓波徐海朱俊召张宇谭健高冠男胡军华林龙 . 基于机器视觉的加热卷烟烟支端部质量检测系统设计. 轻工学报, 2024, 0(0): -.

    5. [5]

      卢晓波徐海朱俊召张宇谭健高冠男胡军华林龙 . 基于机器视觉的加热卷烟烟支端部质量检测系统设计. 轻工学报, 2024, 39(6): 101-107,115. doi: 10.12187/2024.06.012

    6. [6]

      石振兴柴浩浩仵华君朱莹莹么杨 . 内部结构设计对3D打印全麦曲奇饼干品质的影响. 轻工学报, 2024, 39(6): 9-17. doi: 10.12187/2024.06.002

    7. [7]

      张建栋杨忠泮吴恋恋徐大勇朱萍张雯晶堵劲松 . 基于高光谱成像及机器学习的烟叶糖料液施加量判别模型. 轻工学报, 2024, 39(5): 86-94. doi: 10.12187/2024.05.010

    8. [8]

      张宏忠刘振兴胡万达鹿一张硕吴巴特尔李团圆 . 天然碱原卤液采集管道防腐涂层的研制及其性能研究. 轻工学报, 2025, 0(0): -.

    9. [9]

      贾尚羲张怡雪石盼盼王昱李可 . 不同时长超声波处理对鹰嘴豆分离蛋白乳化液稳定性的影响. 轻工学报, 2024, 39(5): 40-49. doi: 10.12187/2024.05.005

    10. [10]

      李敏贺姗姗杨钰雯 . 改良QuEChERS方法结合超高效液相色谱测定火腿肠中杂环胺类化合物. 轻工学报, 2024, 39(5): 60-70. doi: 10.12187/2024.05.007

    11. [11]

      吴彦梁永伟薛云李天笑孙丽莉许春平徐志强 . 基于烟末和玫瑰混合提取的新型烟用香精及其应用研究. 轻工学报, 2025, 40(3): 56-64. doi: 10.12187/2025.03.007

    12. [12]

      李杉姜千一孙冰华温纪平王晓曦 . 麦麸糊粉层粉对混合粉、面团及手抓饼品质特性的影响. 轻工学报, 2024, 39(6): 18-26. doi: 10.12187/2024.06.003

  • 加载中
计量
  • PDF下载量:  28
  • 文章访问数:  2627
  • 引证文献数: 0
文章相关
  • 收稿日期:  2024-04-22
  • 修回日期:  2024-04-30
  • 刊出日期:  2024-06-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
玛丽娜, 敖日格乐, 斯木吉德, 等. 酵母菌混合发酵乳清液及其乙醇发酵阶段工艺优化[J]. 轻工学报, 2024, 39(3): 38-45. doi: 10.12187/2024.03.005
引用本文: 玛丽娜, 敖日格乐, 斯木吉德, 等. 酵母菌混合发酵乳清液及其乙醇发酵阶段工艺优化[J]. 轻工学报, 2024, 39(3): 38-45. doi: 10.12187/2024.03.005
Malina, Aorigele, Simujide and et al. Parameters optimization of ethanol fermentation process in whey liquid fermented by combined yeasts[J]. Journal of Light Industry, 2024, 39(3): 38-45. doi: 10.12187/2024.03.005
Citation: Malina, Aorigele, Simujide and et al. Parameters optimization of ethanol fermentation process in whey liquid fermented by combined yeasts[J]. Journal of Light Industry, 2024, 39(3): 38-45. doi: 10.12187/2024.03.005

酵母菌混合发酵乳清液及其乙醇发酵阶段工艺优化

    作者简介:玛丽娜(1975—),女,内蒙古自治区科尔沁右翼前旗人,内蒙古农业大学讲师,博士,主要研究方向为微生物及生物工程。E-mail:mln6441@163.com
  • 内蒙古农业大学 生命科学学院, 内蒙古 呼和浩特 010018
基金项目:  内蒙古自治区自然科学基金项目(2022YFHH0091)

摘要: 选择马克斯克鲁维酵母CGMCC13907(以下简称马氏酵母CGMCC13907)和酿酒酵母AS2.119为混合发酵剂发酵乳清液制备乳清醋,并采用Plackett-Burman Design(PBD)和Box-Behnken Design(BBD)试验优化乙醇发酵阶段的工艺。结果表明:乙醇发酵阶段的最优工艺为马氏酵母CGMCC13907接种量4.0×106 CFU/mL,酿酒酵母AS2.119接种量4.5×106 CFU/mL,发酵时间151 h,发酵温度40.0 ℃,发酵pH值5.6,姜粉用量0.09 g/100 mL,在此条件下,发酵液中乙醇浓度可达8.70 %vol,比优化前增加了56.2%。因此,选用马氏酵母CGMCC13907结合酿酒酵母AS2.119混合发酵乳清液,可有效解决乳清醋制作过程中的乳糖发酵难题,并获得较理想的乙醇浓度。

English Abstract

参考文献 (29) 相关文章 (12)

目录

/

返回文章