1株甜菜糖蜜源高产胞外多糖明串珠菌的分离鉴定、发酵工艺优化及抗氧化活性研究
Isolation and identification,fermentation process optimization and antioxidant activity of a high exopolysaccharides-producing leuconostoc sp.from sugar beet molasses
-
摘要: 为挖掘甜菜糖蜜中高产胞外多糖乳酸菌菌种资源,对分离自甜菜糖蜜中的1株产胞外多糖菌株M1进行分类鉴定,分析其生长特性;采用单因素试验结合Box-Behnken响应面法优化该菌株利用甜菜糖蜜作为底物发酵胞外多糖的发酵工艺参数,并对提取的粗胞外多糖的抗氧化活性进行分析。结果表明:菌株M1为明串珠菌属的苏奥古姆明串珠菌(Leuconostoc suionicum),其延滞期短(仅2 h),最适生长温度为35 ℃,最适pH值为8.0,最高可耐受质量分数为60%的蔗糖;优化后的胞外多糖发酵培养基为甜菜糖蜜300.0 g/L,酵母粉20.0 g/L,K2HPO4·3H2O 15.0 g/L,MgSO4·7H2O 0.2 g/L,NaCl 0.01 g/L,CaCl2·2H2O 0.01 g/L,MnSO4·4H2O 0.01 g/L,FeSO4·7H2O 0.01 g/L;最优发酵工艺参数为装液量200 mL/250 mL、接种量5%、初始pH值8.1、发酵温度38.5 ℃、发酵时间41.1 h,此条件下的胞外多糖产量最高,为39.1 g/L;菌株M1所产胞外多糖具有良好的抗氧化活性,质量浓度为6.0 mg/mL的胞外多糖对DPPH自由基、·OH自由基和ABTS+自由基的清除率分别为70.25%、47.16%和35.92%,对Fe3+的总还原力为0.42。菌株M1能够利用甜菜糖蜜发酵生产具有较好抗氧化活性的胞外多糖,在生物转化甜菜糖蜜生产功能性胞外多糖产品方面具有良好的应用前景。Abstract: The objective of this study was to screen lactic acid bacteria strains with high exopolysaccharides production potential from sugar beet molasses. The taxonomic identification and growth characteristics of a lactic acid bacteria strain M1 with high exopolysaccharides-producing capacity isolated from sugar beet molasses were investigated. Furthermore, the exopolysaccharides fermentation parameters using sugar beet molasses as an alternative carbon source to sucrose were optimized using a single-factor experiment and response surface methodology based on Box-Behnken design. Moreover, antioxidant activity of the harvested crude exopolysaccharides were evaluated. The results showed that strain M1 was taxonomically classified as Leuconostoc suionicum. The growth profile of L.suionicum M1 indicated a lag phase of 2 hours, an optimal temperature of 35 ℃, a favorable pH value of 8.0, and a remarkable tolerance to sucrose concentrations up to 60%. The optimal medium for exopolysaccharides production consisted of 300 g/L sugar beet molasses, 20.0 g/L yeast extract, 15.0 g/L K2HPO4·3H2O, 0.2 g/L MgSO4·7H2O, 0.01 g/L NaCl, 0.01 g/L CaCl2·2H2O, 0.01 g/L MnSO4·4H2O, 0.01 g/L FeSO4·7H2O. The maximum exopolysaccharides yield of 39.1 g/L was achieved under the following conditions: loading volume 200 mL/250 mL, inoculum size 5%, initial pH value 8.1, fermentation temperature of 38.5 ℃ and fermentation period 41.1 h. The exopolysaccharides produced by strain M1 exhibited significant antioxidant activities, with quenching capacities of 70.25% for DPPH radicals, 47.16% for ·OH radicals, 35.92% for ABTS+ radicals and 0.42 for Fe3+ total reducing force at a concentration of 6.0 mg/mL.Strain M1 was capable of producing exopolysaccharides with antioxidant activity using sugar beet molasses, and could be used as a promising candidate for the bioconversion of sugar beet molasses into functional exopolysaccharides products.
-
-
[1]
JURÁŠKOVÁ D,RIBEIRO S C,SILVA C C G.Exopolysaccharides produced by lactic acid bacteria:From biosynthesis to health-promoting properties[J].Foods,2022,11(2):156.
-
[2]
ZHOU Y,CUI Y H,QU X J.Exopolysaccharides of lactic acid bacteria—structure, bioactivity and associations:A review[J].Carbohydrate Polymers,2019,207:317-332.
-
[3]
DABA G M,ELNAHAS M O,ELKHATEEB W A.Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food,pharmaceutical,and medical applications[J].International Journal of Biological Macromolecules,2021,173:79-89.
-
[4]
KORCZ E,VARGA L.Exopolysaccharides from lactic acid bacteria:Techno-functional application in the food industry[J].Trends in Food Science & Technology,2021,110:375-384.
-
[5]
WU J Y,ZHANG Y H,YE L,et al.The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro:A review[J].Carbohydrate Polymers,2021,253:117308.
-
[6]
ZHANG J,XIAO Y,WANG H C,et al.Lactic acid bacteria-derived exopolysaccharide:Formation,immunomodulatory ability,health effects,and structure-function relationship[J].Microbiological Research,2023,274:127432.
-
[7]
ZHAO X F,LIANG Q.Optimization,probiotic characteristics,and rheological properties of exopolysaccharides from Lactiplantibacillus plantarum MC5[J].Molecules,2023,28(6):2463.
-
[8]
MUSTAFA G,ARSHAD M,BANO I,et al.Biotechnological applications of sugarcane bagasse and sugar beet molasses[J].Biomass Conversion and Biorefinery,2023,13(2):1489-1501.
-
[9]
成思源,马涛,杨东,等.甜菜糖蜜发酵饲料对肉羊生长、屠宰性能、肉品质以及表观消化率的作用[J].饲料工业,2022,43(19):7-13.
-
[10]
BEIGBEDER J B,DE MEDEIROS DANTAS J M,LAVOIE J M.Optimization of yeast,sugar and nutrient concentrations for high ethanol production rate using industrial sugar beet molasses and response surface methodology[J].Fermentation,2021,7(2):86.
-
[11]
ALI A R M,EL-DIN H S,ALREFAEY HASSAN M A,et al.Subsequent improvement of lactic acid production from beet molasses by Enterococcus hirae Ds10 using different fermentation strategies[J].Bioresource Technology Reports,2021,13(6):100617.
-
[12]
KÜÇÜKAIK F,KAZAK H,GVNEY D,et al.Molasses as fermentation substrate for levan production by Halomonas sp[J].Applied Microbiology and Biotechnology,2011,89(6):1729-1740.
-
[13]
ERGENE E,AVCI A.Effects of cultural conditions on exopolysaccharide production by Bacillus sp.ZBP4[J].Tarım Bilimleri Dergisi,2018:386-393.
-
[14]
BAKHTIYARI M,MOOSAVI-NASAB M,ASKARI H.Optimization of succinoglycan hydrocolloid production by Agrobacterium radiobacter grown in sugar beet molasses and investigation of its physicochemical characteristics[J].Food Hydrocolloids,2015,45:18-29.
-
[15]
LAZARIDOU A,BILIADERIS C G,ROUKAS T,et al.Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture[J].Applied Biochemistry and Biotechnology,2002,97(1):1-22.
-
[16]
周晴晴.产胞外多糖假肠膜明串珠菌XG5的分离及多糖结构和性质的研究[D].天津:天津大学,2018.
-
[17]
ZENG C B,YE G Y,LI G C,et al.RID serve as a more appropriate measure than phenol sulfuric acid method for natural water-soluble polysaccharides quantification[J].Carbohydrate Polymers,2022,278:118928.
-
[18]
梁静南,刘一苇,谢家仪.制备细菌类单细胞生物扫描电镜样品方法的改进[J].电子显微学报,2013,32(3):276-278.
-
[19]
郑丽君,申光辉,张志清,等.真空包装免泡豆杆优势腐败细菌分离鉴定及其致腐能力分析[J].食品科学,2018,39(2):177-184.
-
[20]
麦日艳古·亚生,伊力米热·热夏提,努尔古丽·热合曼.北疆传统发酵生奶酪中乳酸菌的耐受性及益生特性测定[J].微生物学通报,2023,50(5):2044-2062.
-
[21]
蔡淼,陈超,曹永强,等.甲基营养型芽孢杆菌产胞外多糖发酵条件及生物活性研究[J].食品科学技术学报,2020,38(2):48-58
,98. -
[22]
焦斐,杨倩,杨超,等.陇藜1号藜麦清蛋白体外消化产物抗氧化活性及结构特征分析[J].食品科学技术学报,2023,41(3):116-126.
-
[23]
李娇,周志帅,申光辉.美拉德反应改善熟化马铃薯冻融酶解汁液风味[J].中国食品学报,2022,22(11):190-203.
-
[24]
CHEN S H,HUANG H L,HUANG G L.Extraction, derivatization and antioxidant activity of cucumber polysaccharide[J].International Journal of Biological Macromolecules,2019,140:1047-1053.
-
[25]
鄢明辉.肠膜明串珠菌BD3749亚种水平的鉴定及其生长特性研究[J].食品科学技术学报,2017,35(4):42-48.
-
[26]
李祎,吴晓敏,杜航,等.一株肠膜明串珠菌的分离鉴定及其抑菌特性[J].微生物学通报,2021,48(12):4776-4788.
-
[27]
MOHAMMADZADEH M,HONARVAR M,ZAREI A R,et al.A new approach for separation and recovery of betaine from beet molasses based on cloud point extraction technique[J].Journal of Food Science and Technology,2018,55(4):1215-1223.
-
[28]
姜云芸,蔡淼,邵淑娟,等.植物乳杆菌K25发酵产胞外多糖的影响因素及其应用[J].食品科学技术学报,2018,36(1):25-34.
-
[29]
POLAK-BERECKA M,WAKO A,KUBIK-KOMAR A.Optimization of culture conditions for exopolysaccharide production by a probiotic strain of Lactobacillus rhamnosus E/N[J].Polish Journal of Microbiology,2014,63(2):253-257.
-
[30]
RAZA W,YANG W,JUN Y,et al.Optimization and characterization of a polysaccharide produced by Pseudomonas fluorescens WR-1 and its antioxidant activity[J].Carbohydrate Polymers,2012,90(2):921-929.
-
[31]
HEREHER F,ELFALLAL A,ABOU-DOBARA M,et al.Cultural optimization of a new exopolysaccharide producer “Micrococcus roseus”[J].Beni-Suef University Journal of Basic and Applied Sciences,2018,7(4):632-639.
-
[32]
ONILUDE A A,OLAOYE O,FADAHUNSI I F,et al.Effects of cultural conditions on dextran production by Leuconostoc spp.[J].International Food Research Journal,2013,20(4):1645-1651.
-
[33]
PAN L,WANG Q,QU L F,et al.Pilot-scale production of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 and its application in set yogurt[J].Journal of Dairy Science,2022,105(2):1072-1083.
-
[34]
臧文晶,刘丽娜,赵丹.肠膜明串珠菌HDE1的分离鉴定及其胞外多糖抗氧化和牛奶凝结特性研究[J].食品工业科技,2023,44(4):155-162.
-
[1]
-

计量
- PDF下载量: 27
- 文章访问数: 2518
- 引证文献数: 0