一种基于预处理共轭梯度法的给水管网水力计算方法
A calculation method of water distribution network hydraulic based on preconditioned conjugate gradient method
-
摘要: 提出了一种新的给水管网水力计算方法.该方法对给水管网系统的节点流量连续性方程进行重新构造,用改进的Cholesky分解方法对重新构造的矩阵进行三角分解,然后使用预处理共轭梯度法求解.经用供水管网模型进行验证并与EPANET软件的计算结果进行比较,结果表明:该算法共迭代5次,用时0.102 s,与EPANET混合节点-环方法的求解精度和速度非常接近,且弥补了EPA-NET软件的应用缺陷,可用于求解大型城市的给水管网系统.
-
关键词:
- 给水管网水力计算方法 /
- 预处理共轭梯度法 /
- Cholesky分解 /
- 混合节点-环方法
Abstract: A calculation method of water distribution network hydraulic was proposed.The nodes flow continuity equation of water distribution system was reconstructed,the reconstructed matrix was decomposed triangularly by a modified Cholesky decomposition method,and thus it was suitable for the use of preconditioned conjugate gradient method.It was tested by the model of water distribution network(WDN) hydraulic.Compared with calculation result of EPANET software,the proposed algorithm does total iteration five times in 0.102 s,which closed to the result of mixed node-ring method used in EPANET software in the aspect of accuracy and speed. The proposed algorithm overcame the defects of EPANET software,which could be used to solve large-scale urban water supply network system. -
-
[1]
Basha H A,Malaeb L N.Eulerian-Lagrangian method for constituent transport in water distribution networks[J].Journal of Hydraulic Engineering,2007(10):1155.
-
[2]
陆际汉.给水管网平差精确计算法——水力比拟法[J].中国给水排水,2010,26(24):62.
-
[3]
陈喆,俞国平.给水管网双向流管段水力计算分析[J].苏州科技学院学报:工程技术版,2012,25(3):9.
-
[4]
赵洪宾.给水管网系统理论与分析[M].北京:中国建筑工业出版社,2003.
-
[5]
段焕丰.城市供水系统动态建模技术研究[D].上海:同济大学,2006.
-
[6]
王国栋,俞国平.管段重要性指数在水力模型校核中的应用[J].苏州科技学院学报:工程技术版,2007,20(1):53.
-
[7]
彭永臻,崔福义.给水排水工程计算机应用[M].2版.北京:中国建筑工业出版社,2002.
-
[8]
Rossman L A,Boulos P,Altman T.Discrete volume-element method for network water-quality models[J].Water Resour Plann Manage,1993,119(5):505.
-
[9]
Rossman L A.EPANET 2 User's Manual[M].Cincinnati:National Risk Management Research Laboratory(U.S. Environmental Protection Agency),2000.
-
[10]
严煦世,刘遂庆.给水排水管网系统[M].北京:中国建筑工业出版社,2002.
-
[11]
Nocedal J,Wright S J.Numerical Optimization[M].New York:Springer Verlag,2006.
-
[12]
Andrei N.New accelerated conjugate gradient algorithms as a modification of Dai-Yuan's computational scheme for unconstrained optimization[J].Journal of Computational and Applied Mathematics,2010,234(12):3397.
-
[13]
Andrei N.Open problems in conjugate gradient algorithms for unconstrained optimization[J].Bulletin of the Malaysian Mathematical Sciences Society,2011,34(2):319.
-
[14]
Hu C M,Wan Z.An extended spectral conjugate gradient method for unconstrained optimization problems[J].British Journal of Mathematics & Computer Science,2013,3(2):86.
-
[15]
Du S Q,Chen Y Y.Global convergence of a modified spectral FR conjugate gradient method[J].Appl Math Comput,2008,202:766.
-
[16]
Yu G H,Guan L T,Wei Z X.Globally convergent Polak-Ribire-Polyak conjugate gradient methods under a modified Wolfe line search[J].Appl Math Comput,2009,215(8):3082.
-
[17]
An X M,Li D H,Xiao Y H.Sufficient descent directions in unconstrained optimization[J].Comput Optim Appl,2011,48:515.
-
[18]
Hestenes M R,Stieefl E L.Methods of conjugate gradients of solving linear systems[J].Journal of Research of the National Bureau of Standards,1952,5(2):409.
-
[19]
Fletcher R,Reeves C.Function minimization by conjugate Gradients[J].Computer Journa,1964(7):149.
-
[20]
李庆杨.数值分析[M].北京:清华大学出版社,2006.
-
[21]
吴勃英.数值分析[M].北京:高等教育出版社,2007.
-
[1]
-
点击查看大图
计量
- PDF下载量: 22
- 文章访问数: 1799
- 引证文献数: 0

下载: